| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicssdvh.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | dicssdvh.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | dicssdvh.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dicssdvh.i |  |-  I = ( ( DIsoC ` K ) ` W ) | 
						
							| 5 |  | dicssdvh.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 6 |  | dicssdvh.v |  |-  V = ( Base ` U ) | 
						
							| 7 |  | simprl |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | simprr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> s e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 10 |  | eqid |  |-  ( oc ` K ) = ( oc ` K ) | 
						
							| 11 | 1 10 2 3 | lhpocnel |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) | 
						
							| 13 |  | simplr |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 14 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 15 |  | eqid |  |-  ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) | 
						
							| 16 | 1 2 3 14 15 | ltrniotacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 17 | 8 12 13 16 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 18 |  | eqid |  |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) | 
						
							| 19 | 3 14 18 | tendocl |  |-  ( ( ( K e. HL /\ W e. H ) /\ s e. ( ( TEndo ` K ) ` W ) /\ ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 20 | 8 9 17 19 | syl3anc |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 21 | 7 20 | eqeltrd |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> f e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 22 | 21 9 9 | jca31 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 23 | 22 | ex |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) ) | 
						
							| 24 | 23 | ssopab2dv |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } C_ { <. f , s >. | ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) | 
						
							| 25 |  | opabssxp |  |-  { <. f , s >. | ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) | 
						
							| 26 | 24 25 | sstrdi |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 27 |  | eqid |  |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) | 
						
							| 28 | 1 2 3 27 14 18 4 | dicval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) | 
						
							| 29 | 3 14 18 5 6 | dvhvbase |  |-  ( ( K e. HL /\ W e. H ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 31 | 26 28 30 | 3sstr4d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) C_ V ) |