Step |
Hyp |
Ref |
Expression |
1 |
|
dicssdvh.l |
|- .<_ = ( le ` K ) |
2 |
|
dicssdvh.a |
|- A = ( Atoms ` K ) |
3 |
|
dicssdvh.h |
|- H = ( LHyp ` K ) |
4 |
|
dicssdvh.i |
|- I = ( ( DIsoC ` K ) ` W ) |
5 |
|
dicssdvh.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dicssdvh.v |
|- V = ( Base ` U ) |
7 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
8 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> s e. ( ( TEndo ` K ) ` W ) ) |
10 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
11 |
1 10 2 3
|
lhpocnel |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
12 |
11
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
13 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
14 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
15 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) |
16 |
1 2 3 14 15
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
17 |
8 12 13 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
18 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
19 |
3 14 18
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( ( TEndo ` K ) ` W ) /\ ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) e. ( ( LTrn ` K ) ` W ) ) |
20 |
8 9 17 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) e. ( ( LTrn ` K ) ` W ) ) |
21 |
7 20
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> f e. ( ( LTrn ` K ) ` W ) ) |
22 |
21 9 9
|
jca31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) |
23 |
22
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) ) |
24 |
23
|
ssopab2dv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } C_ { <. f , s >. | ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) |
25 |
|
opabssxp |
|- { <. f , s >. | ( ( f e. ( ( LTrn ` K ) ` W ) /\ s e. ( ( TEndo ` K ) ` W ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) |
26 |
24 25
|
sstrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
27 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
28 |
1 2 3 27 14 18 4
|
dicval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) |
29 |
3 14 18 5 6
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
30 |
29
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> V = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) |
31 |
26 28 30
|
3sstr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) C_ V ) |