| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicelval1sta.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | dicelval1sta.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | dicelval1sta.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dicelval1sta.p |  |-  P = ( ( oc ` K ) ` W ) | 
						
							| 5 |  | dicelval1sta.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 6 |  | dicelval1sta.i |  |-  I = ( ( DIsoC ` K ) ` W ) | 
						
							| 7 |  | eqid |  |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) | 
						
							| 8 | 1 2 3 4 5 7 6 | dicval |  |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) | 
						
							| 9 | 8 | eleq2d |  |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) ) | 
						
							| 10 | 9 | biimp3a |  |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) | 
						
							| 11 |  | eqeq1 |  |-  ( f = ( 1st ` Y ) -> ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) | 
						
							| 12 | 11 | anbi1d |  |-  ( f = ( 1st ` Y ) -> ( ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) ) | 
						
							| 13 |  | fveq1 |  |-  ( s = ( 2nd ` Y ) -> ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( s = ( 2nd ` Y ) -> ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) | 
						
							| 15 |  | eleq1 |  |-  ( s = ( 2nd ` Y ) -> ( s e. ( ( TEndo ` K ) ` W ) <-> ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 16 | 14 15 | anbi12d |  |-  ( s = ( 2nd ` Y ) -> ( ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) ) | 
						
							| 17 | 12 16 | elopabi |  |-  ( Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 18 | 10 17 | syl |  |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 19 | 18 | simpld |  |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) |