Metamath Proof Explorer


Theorem dicelval1sta

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicelval1sta.l
|- .<_ = ( le ` K )
dicelval1sta.a
|- A = ( Atoms ` K )
dicelval1sta.h
|- H = ( LHyp ` K )
dicelval1sta.p
|- P = ( ( oc ` K ) ` W )
dicelval1sta.t
|- T = ( ( LTrn ` K ) ` W )
dicelval1sta.i
|- I = ( ( DIsoC ` K ) ` W )
Assertion dicelval1sta
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) )

Proof

Step Hyp Ref Expression
1 dicelval1sta.l
 |-  .<_ = ( le ` K )
2 dicelval1sta.a
 |-  A = ( Atoms ` K )
3 dicelval1sta.h
 |-  H = ( LHyp ` K )
4 dicelval1sta.p
 |-  P = ( ( oc ` K ) ` W )
5 dicelval1sta.t
 |-  T = ( ( LTrn ` K ) ` W )
6 dicelval1sta.i
 |-  I = ( ( DIsoC ` K ) ` W )
7 eqid
 |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W )
8 1 2 3 4 5 7 6 dicval
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } )
9 8 eleq2d
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) )
10 9 biimp3a
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } )
11 eqeq1
 |-  ( f = ( 1st ` Y ) -> ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) ) )
12 11 anbi1d
 |-  ( f = ( 1st ` Y ) -> ( ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) )
13 fveq1
 |-  ( s = ( 2nd ` Y ) -> ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) )
14 13 eqeq2d
 |-  ( s = ( 2nd ` Y ) -> ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) )
15 eleq1
 |-  ( s = ( 2nd ` Y ) -> ( s e. ( ( TEndo ` K ) ` W ) <-> ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) )
16 14 15 anbi12d
 |-  ( s = ( 2nd ` Y ) -> ( ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) )
17 12 16 elopabi
 |-  ( Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) )
18 10 17 syl
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) )
19 18 simpld
 |-  ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) )