Step |
Hyp |
Ref |
Expression |
1 |
|
dicelval1sta.l |
|- .<_ = ( le ` K ) |
2 |
|
dicelval1sta.a |
|- A = ( Atoms ` K ) |
3 |
|
dicelval1sta.h |
|- H = ( LHyp ` K ) |
4 |
|
dicelval1sta.p |
|- P = ( ( oc ` K ) ` W ) |
5 |
|
dicelval1sta.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
dicelval1sta.i |
|- I = ( ( DIsoC ` K ) ` W ) |
7 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
8 |
1 2 3 4 5 7 6
|
dicval |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) |
9 |
8
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Y e. ( I ` Q ) <-> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) ) |
10 |
9
|
biimp3a |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } ) |
11 |
|
eqeq1 |
|- ( f = ( 1st ` Y ) -> ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) |
12 |
11
|
anbi1d |
|- ( f = ( 1st ` Y ) -> ( ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) ) |
13 |
|
fveq1 |
|- ( s = ( 2nd ` Y ) -> ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) |
14 |
13
|
eqeq2d |
|- ( s = ( 2nd ` Y ) -> ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) <-> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) ) |
15 |
|
eleq1 |
|- ( s = ( 2nd ` Y ) -> ( s e. ( ( TEndo ` K ) ` W ) <-> ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) |
16 |
14 15
|
anbi12d |
|- ( s = ( 2nd ` Y ) -> ( ( ( 1st ` Y ) = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) ) |
17 |
12 16
|
elopabi |
|- ( Y e. { <. f , s >. | ( f = ( s ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ s e. ( ( TEndo ` K ) ` W ) ) } -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) |
18 |
10 17
|
syl |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) ) |
19 |
18
|
simpld |
|- ( ( ( K e. V /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. T ( g ` P ) = Q ) ) ) |