Metamath Proof Explorer


Theorem dicelval1sta

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicelval1sta.l = ( le ‘ 𝐾 )
dicelval1sta.a 𝐴 = ( Atoms ‘ 𝐾 )
dicelval1sta.h 𝐻 = ( LHyp ‘ 𝐾 )
dicelval1sta.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dicelval1sta.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dicelval1sta.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion dicelval1sta ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dicelval1sta.l = ( le ‘ 𝐾 )
2 dicelval1sta.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicelval1sta.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicelval1sta.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
5 dicelval1sta.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 dicelval1sta.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 4 5 7 6 dicval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) = { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
9 8 eleq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑄 ) ↔ 𝑌 ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) )
10 9 biimp3a ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → 𝑌 ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } )
11 eqeq1 ( 𝑓 = ( 1st𝑌 ) → ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ↔ ( 1st𝑌 ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ) )
12 11 anbi1d ( 𝑓 = ( 1st𝑌 ) → ( ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( ( 1st𝑌 ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
13 fveq1 ( 𝑠 = ( 2nd𝑌 ) → ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )
14 13 eqeq2d ( 𝑠 = ( 2nd𝑌 ) → ( ( 1st𝑌 ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ↔ ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ) )
15 eleq1 ( 𝑠 = ( 2nd𝑌 ) → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↔ ( 2nd𝑌 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
16 14 15 anbi12d ( 𝑠 = ( 2nd𝑌 ) → ( ( ( 1st𝑌 ) = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
17 12 16 elopabi ( 𝑌 ∈ { ⟨ 𝑓 , 𝑠 ⟩ ∣ ( 𝑓 = ( 𝑠 ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } → ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
18 10 17 syl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → ( ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) ∧ ( 2nd𝑌 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
19 18 simpld ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → ( 1st𝑌 ) = ( ( 2nd𝑌 ) ‘ ( 𝑔𝑇 ( 𝑔𝑃 ) = 𝑄 ) ) )