Metamath Proof Explorer


Theorem elopabi

Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypotheses elopabi.1 ( 𝑥 = ( 1st𝐴 ) → ( 𝜑𝜓 ) )
elopabi.2 ( 𝑦 = ( 2nd𝐴 ) → ( 𝜓𝜒 ) )
Assertion elopabi ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → 𝜒 )

Proof

Step Hyp Ref Expression
1 elopabi.1 ( 𝑥 = ( 1st𝐴 ) → ( 𝜑𝜓 ) )
2 elopabi.2 ( 𝑦 = ( 2nd𝐴 ) → ( 𝜓𝜒 ) )
3 relopabv Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
4 1st2nd ( ( Rel { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ∧ 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ) → 𝐴 = ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ )
5 3 4 mpan ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → 𝐴 = ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ )
6 id ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
7 5 6 eqeltrrd ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
8 fvex ( 1st𝐴 ) ∈ V
9 fvex ( 2nd𝐴 ) ∈ V
10 8 9 1 2 opelopab ( ⟨ ( 1st𝐴 ) , ( 2nd𝐴 ) ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜒 )
11 7 10 sylib ( 𝐴 ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → 𝜒 )