Step |
Hyp |
Ref |
Expression |
1 |
|
elopabi.1 |
|- ( x = ( 1st ` A ) -> ( ph <-> ps ) ) |
2 |
|
elopabi.2 |
|- ( y = ( 2nd ` A ) -> ( ps <-> ch ) ) |
3 |
|
relopabv |
|- Rel { <. x , y >. | ph } |
4 |
|
1st2nd |
|- ( ( Rel { <. x , y >. | ph } /\ A e. { <. x , y >. | ph } ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
5 |
3 4
|
mpan |
|- ( A e. { <. x , y >. | ph } -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
6 |
|
id |
|- ( A e. { <. x , y >. | ph } -> A e. { <. x , y >. | ph } ) |
7 |
5 6
|
eqeltrrd |
|- ( A e. { <. x , y >. | ph } -> <. ( 1st ` A ) , ( 2nd ` A ) >. e. { <. x , y >. | ph } ) |
8 |
|
fvex |
|- ( 1st ` A ) e. _V |
9 |
|
fvex |
|- ( 2nd ` A ) e. _V |
10 |
8 9 1 2
|
opelopab |
|- ( <. ( 1st ` A ) , ( 2nd ` A ) >. e. { <. x , y >. | ph } <-> ch ) |
11 |
7 10
|
sylib |
|- ( A e. { <. x , y >. | ph } -> ch ) |