Metamath Proof Explorer


Theorem dicelval1stN

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicelval1st.l = ( le ‘ 𝐾 )
dicelval1st.a 𝐴 = ( Atoms ‘ 𝐾 )
dicelval1st.h 𝐻 = ( LHyp ‘ 𝐾 )
dicelval1st.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dicelval1st.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion dicelval1stN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → ( 1st𝑌 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 dicelval1st.l = ( le ‘ 𝐾 )
2 dicelval1st.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicelval1st.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicelval1st.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 dicelval1st.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 eqid ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )
8 1 2 3 5 6 7 dicssdvh ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) )
9 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
10 3 4 9 6 7 dvhvbase ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
11 10 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 8 11 sseqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) ⊆ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 12 sseld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑌 ∈ ( 𝐼𝑄 ) → 𝑌 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
14 13 3impia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → 𝑌 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) )
15 xp1st ( 𝑌 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 1st𝑌 ) ∈ 𝑇 )
16 14 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑄 ) ) → ( 1st𝑌 ) ∈ 𝑇 )