Metamath Proof Explorer


Theorem dicelval1stN

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicelval1st.l ˙ = K
dicelval1st.a A = Atoms K
dicelval1st.h H = LHyp K
dicelval1st.t T = LTrn K W
dicelval1st.i I = DIsoC K W
Assertion dicelval1stN K HL W H Q A ¬ Q ˙ W Y I Q 1 st Y T

Proof

Step Hyp Ref Expression
1 dicelval1st.l ˙ = K
2 dicelval1st.a A = Atoms K
3 dicelval1st.h H = LHyp K
4 dicelval1st.t T = LTrn K W
5 dicelval1st.i I = DIsoC K W
6 eqid DVecH K W = DVecH K W
7 eqid Base DVecH K W = Base DVecH K W
8 1 2 3 5 6 7 dicssdvh K HL W H Q A ¬ Q ˙ W I Q Base DVecH K W
9 eqid TEndo K W = TEndo K W
10 3 4 9 6 7 dvhvbase K HL W H Base DVecH K W = T × TEndo K W
11 10 adantr K HL W H Q A ¬ Q ˙ W Base DVecH K W = T × TEndo K W
12 8 11 sseqtrd K HL W H Q A ¬ Q ˙ W I Q T × TEndo K W
13 12 sseld K HL W H Q A ¬ Q ˙ W Y I Q Y T × TEndo K W
14 13 3impia K HL W H Q A ¬ Q ˙ W Y I Q Y T × TEndo K W
15 xp1st Y T × TEndo K W 1 st Y T
16 14 15 syl K HL W H Q A ¬ Q ˙ W Y I Q 1 st Y T