Metamath Proof Explorer


Theorem dicelval1stN

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dicelval1st.l ˙=K
dicelval1st.a A=AtomsK
dicelval1st.h H=LHypK
dicelval1st.t T=LTrnKW
dicelval1st.i I=DIsoCKW
Assertion dicelval1stN KHLWHQA¬Q˙WYIQ1stYT

Proof

Step Hyp Ref Expression
1 dicelval1st.l ˙=K
2 dicelval1st.a A=AtomsK
3 dicelval1st.h H=LHypK
4 dicelval1st.t T=LTrnKW
5 dicelval1st.i I=DIsoCKW
6 eqid DVecHKW=DVecHKW
7 eqid BaseDVecHKW=BaseDVecHKW
8 1 2 3 5 6 7 dicssdvh KHLWHQA¬Q˙WIQBaseDVecHKW
9 eqid TEndoKW=TEndoKW
10 3 4 9 6 7 dvhvbase KHLWHBaseDVecHKW=T×TEndoKW
11 10 adantr KHLWHQA¬Q˙WBaseDVecHKW=T×TEndoKW
12 8 11 sseqtrd KHLWHQA¬Q˙WIQT×TEndoKW
13 12 sseld KHLWHQA¬Q˙WYIQYT×TEndoKW
14 13 3impia KHLWHQA¬Q˙WYIQYT×TEndoKW
15 xp1st YT×TEndoKW1stYT
16 14 15 syl KHLWHQA¬Q˙WYIQ1stYT