Metamath Proof Explorer


Theorem dicelval2nd

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicelval2nd.l ˙ = K
dicelval2nd.a A = Atoms K
dicelval2nd.h H = LHyp K
dicelval2nd.e E = TEndo K W
dicelval2nd.i I = DIsoC K W
Assertion dicelval2nd K HL W H Q A ¬ Q ˙ W Y I Q 2 nd Y E

Proof

Step Hyp Ref Expression
1 dicelval2nd.l ˙ = K
2 dicelval2nd.a A = Atoms K
3 dicelval2nd.h H = LHyp K
4 dicelval2nd.e E = TEndo K W
5 dicelval2nd.i I = DIsoC K W
6 eqid DVecH K W = DVecH K W
7 eqid Base DVecH K W = Base DVecH K W
8 1 2 3 5 6 7 dicssdvh K HL W H Q A ¬ Q ˙ W I Q Base DVecH K W
9 eqid LTrn K W = LTrn K W
10 3 9 4 6 7 dvhvbase K HL W H Base DVecH K W = LTrn K W × E
11 10 adantr K HL W H Q A ¬ Q ˙ W Base DVecH K W = LTrn K W × E
12 8 11 sseqtrd K HL W H Q A ¬ Q ˙ W I Q LTrn K W × E
13 12 sseld K HL W H Q A ¬ Q ˙ W Y I Q Y LTrn K W × E
14 13 3impia K HL W H Q A ¬ Q ˙ W Y I Q Y LTrn K W × E
15 xp2nd Y LTrn K W × E 2 nd Y E
16 14 15 syl K HL W H Q A ¬ Q ˙ W Y I Q 2 nd Y E