Metamath Proof Explorer


Theorem dicelval2nd

Description: Membership in value of the partial isomorphism C for a lattice K . (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicelval2nd.l ˙=K
dicelval2nd.a A=AtomsK
dicelval2nd.h H=LHypK
dicelval2nd.e E=TEndoKW
dicelval2nd.i I=DIsoCKW
Assertion dicelval2nd KHLWHQA¬Q˙WYIQ2ndYE

Proof

Step Hyp Ref Expression
1 dicelval2nd.l ˙=K
2 dicelval2nd.a A=AtomsK
3 dicelval2nd.h H=LHypK
4 dicelval2nd.e E=TEndoKW
5 dicelval2nd.i I=DIsoCKW
6 eqid DVecHKW=DVecHKW
7 eqid BaseDVecHKW=BaseDVecHKW
8 1 2 3 5 6 7 dicssdvh KHLWHQA¬Q˙WIQBaseDVecHKW
9 eqid LTrnKW=LTrnKW
10 3 9 4 6 7 dvhvbase KHLWHBaseDVecHKW=LTrnKW×E
11 10 adantr KHLWHQA¬Q˙WBaseDVecHKW=LTrnKW×E
12 8 11 sseqtrd KHLWHQA¬Q˙WIQLTrnKW×E
13 12 sseld KHLWHQA¬Q˙WYIQYLTrnKW×E
14 13 3impia KHLWHQA¬Q˙WYIQYLTrnKW×E
15 xp2nd YLTrnKW×E2ndYE
16 14 15 syl KHLWHQA¬Q˙WYIQ2ndYE