Metamath Proof Explorer


Theorem dicvaddcl

Description: Membership in value of the partial isomorphism C is closed under vector sum. (Contributed by NM, 16-Feb-2014)

Ref Expression
Hypotheses dicvaddcl.l ˙=K
dicvaddcl.a A=AtomsK
dicvaddcl.h H=LHypK
dicvaddcl.u U=DVecHKW
dicvaddcl.i I=DIsoCKW
dicvaddcl.p +˙=+U
Assertion dicvaddcl KHLWHQA¬Q˙WXIQYIQX+˙YIQ

Proof

Step Hyp Ref Expression
1 dicvaddcl.l ˙=K
2 dicvaddcl.a A=AtomsK
3 dicvaddcl.h H=LHypK
4 dicvaddcl.u U=DVecHKW
5 dicvaddcl.i I=DIsoCKW
6 dicvaddcl.p +˙=+U
7 simp1 KHLWHQA¬Q˙WXIQYIQKHLWH
8 eqid BaseU=BaseU
9 1 2 3 5 4 8 dicssdvh KHLWHQA¬Q˙WIQBaseU
10 eqid LTrnKW=LTrnKW
11 eqid TEndoKW=TEndoKW
12 3 10 11 4 8 dvhvbase KHLWHBaseU=LTrnKW×TEndoKW
13 12 eqcomd KHLWHLTrnKW×TEndoKW=BaseU
14 13 adantr KHLWHQA¬Q˙WLTrnKW×TEndoKW=BaseU
15 9 14 sseqtrrd KHLWHQA¬Q˙WIQLTrnKW×TEndoKW
16 15 3adant3 KHLWHQA¬Q˙WXIQYIQIQLTrnKW×TEndoKW
17 simp3l KHLWHQA¬Q˙WXIQYIQXIQ
18 16 17 sseldd KHLWHQA¬Q˙WXIQYIQXLTrnKW×TEndoKW
19 simp3r KHLWHQA¬Q˙WXIQYIQYIQ
20 16 19 sseldd KHLWHQA¬Q˙WXIQYIQYLTrnKW×TEndoKW
21 eqid ScalarU=ScalarU
22 eqid +ScalarU=+ScalarU
23 3 10 11 4 21 6 22 dvhvadd KHLWHXLTrnKW×TEndoKWYLTrnKW×TEndoKWX+˙Y=1stX1stY2ndX+ScalarU2ndY
24 7 18 20 23 syl12anc KHLWHQA¬Q˙WXIQYIQX+˙Y=1stX1stY2ndX+ScalarU2ndY
25 1 2 3 11 5 dicelval2nd KHLWHQA¬Q˙WXIQ2ndXTEndoKW
26 25 3adant3r KHLWHQA¬Q˙WXIQYIQ2ndXTEndoKW
27 1 2 3 11 5 dicelval2nd KHLWHQA¬Q˙WYIQ2ndYTEndoKW
28 27 3adant3l KHLWHQA¬Q˙WXIQYIQ2ndYTEndoKW
29 eqid ocK=ocK
30 1 29 2 3 lhpocnel KHLWHocKWA¬ocKW˙W
31 30 3ad2ant1 KHLWHQA¬Q˙WXIQYIQocKWA¬ocKW˙W
32 simp2 KHLWHQA¬Q˙WXIQYIQQA¬Q˙W
33 eqid ιgLTrnKW|gocKW=Q=ιgLTrnKW|gocKW=Q
34 1 2 3 10 33 ltrniotacl KHLWHocKWA¬ocKW˙WQA¬Q˙WιgLTrnKW|gocKW=QLTrnKW
35 7 31 32 34 syl3anc KHLWHQA¬Q˙WXIQYIQιgLTrnKW|gocKW=QLTrnKW
36 eqid sTEndoKW,tTEndoKWhLTrnKWshth=sTEndoKW,tTEndoKWhLTrnKWshth
37 10 36 tendospdi2 2ndXTEndoKW2ndYTEndoKWιgLTrnKW|gocKW=QLTrnKW2ndXsTEndoKW,tTEndoKWhLTrnKWshth2ndYιgLTrnKW|gocKW=Q=2ndXιgLTrnKW|gocKW=Q2ndYιgLTrnKW|gocKW=Q
38 26 28 35 37 syl3anc KHLWHQA¬Q˙WXIQYIQ2ndXsTEndoKW,tTEndoKWhLTrnKWshth2ndYιgLTrnKW|gocKW=Q=2ndXιgLTrnKW|gocKW=Q2ndYιgLTrnKW|gocKW=Q
39 3 10 11 4 21 36 22 dvhfplusr KHLWH+ScalarU=sTEndoKW,tTEndoKWhLTrnKWshth
40 39 3ad2ant1 KHLWHQA¬Q˙WXIQYIQ+ScalarU=sTEndoKW,tTEndoKWhLTrnKWshth
41 40 oveqd KHLWHQA¬Q˙WXIQYIQ2ndX+ScalarU2ndY=2ndXsTEndoKW,tTEndoKWhLTrnKWshth2ndY
42 41 fveq1d KHLWHQA¬Q˙WXIQYIQ2ndX+ScalarU2ndYιgLTrnKW|gocKW=Q=2ndXsTEndoKW,tTEndoKWhLTrnKWshth2ndYιgLTrnKW|gocKW=Q
43 eqid ocKW=ocKW
44 1 2 3 43 10 5 dicelval1sta KHLWHQA¬Q˙WXIQ1stX=2ndXιgLTrnKW|gocKW=Q
45 44 3adant3r KHLWHQA¬Q˙WXIQYIQ1stX=2ndXιgLTrnKW|gocKW=Q
46 1 2 3 43 10 5 dicelval1sta KHLWHQA¬Q˙WYIQ1stY=2ndYιgLTrnKW|gocKW=Q
47 46 3adant3l KHLWHQA¬Q˙WXIQYIQ1stY=2ndYιgLTrnKW|gocKW=Q
48 45 47 coeq12d KHLWHQA¬Q˙WXIQYIQ1stX1stY=2ndXιgLTrnKW|gocKW=Q2ndYιgLTrnKW|gocKW=Q
49 38 42 48 3eqtr4rd KHLWHQA¬Q˙WXIQYIQ1stX1stY=2ndX+ScalarU2ndYιgLTrnKW|gocKW=Q
50 3 10 11 36 tendoplcl KHLWH2ndXTEndoKW2ndYTEndoKW2ndXsTEndoKW,tTEndoKWhLTrnKWshth2ndYTEndoKW
51 7 26 28 50 syl3anc KHLWHQA¬Q˙WXIQYIQ2ndXsTEndoKW,tTEndoKWhLTrnKWshth2ndYTEndoKW
52 41 51 eqeltrd KHLWHQA¬Q˙WXIQYIQ2ndX+ScalarU2ndYTEndoKW
53 fvex 1stXV
54 fvex 1stYV
55 53 54 coex 1stX1stYV
56 ovex 2ndX+ScalarU2ndYV
57 1 2 3 43 10 11 5 55 56 dicopelval KHLWHQA¬Q˙W1stX1stY2ndX+ScalarU2ndYIQ1stX1stY=2ndX+ScalarU2ndYιgLTrnKW|gocKW=Q2ndX+ScalarU2ndYTEndoKW
58 57 3adant3 KHLWHQA¬Q˙WXIQYIQ1stX1stY2ndX+ScalarU2ndYIQ1stX1stY=2ndX+ScalarU2ndYιgLTrnKW|gocKW=Q2ndX+ScalarU2ndYTEndoKW
59 49 52 58 mpbir2and KHLWHQA¬Q˙WXIQYIQ1stX1stY2ndX+ScalarU2ndYIQ
60 24 59 eqeltrd KHLWHQA¬Q˙WXIQYIQX+˙YIQ