Step |
Hyp |
Ref |
Expression |
1 |
|
dicvaddcl.l |
|
2 |
|
dicvaddcl.a |
|
3 |
|
dicvaddcl.h |
|
4 |
|
dicvaddcl.u |
|
5 |
|
dicvaddcl.i |
|
6 |
|
dicvaddcl.p |
|
7 |
|
simp1 |
|
8 |
|
eqid |
|
9 |
1 2 3 5 4 8
|
dicssdvh |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
3 10 11 4 8
|
dvhvbase |
|
13 |
12
|
eqcomd |
|
14 |
13
|
adantr |
|
15 |
9 14
|
sseqtrrd |
|
16 |
15
|
3adant3 |
|
17 |
|
simp3l |
|
18 |
16 17
|
sseldd |
|
19 |
|
simp3r |
|
20 |
16 19
|
sseldd |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
3 10 11 4 21 6 22
|
dvhvadd |
|
24 |
7 18 20 23
|
syl12anc |
|
25 |
1 2 3 11 5
|
dicelval2nd |
|
26 |
25
|
3adant3r |
|
27 |
1 2 3 11 5
|
dicelval2nd |
|
28 |
27
|
3adant3l |
|
29 |
|
eqid |
|
30 |
1 29 2 3
|
lhpocnel |
|
31 |
30
|
3ad2ant1 |
|
32 |
|
simp2 |
|
33 |
|
eqid |
|
34 |
1 2 3 10 33
|
ltrniotacl |
|
35 |
7 31 32 34
|
syl3anc |
|
36 |
|
eqid |
|
37 |
10 36
|
tendospdi2 |
|
38 |
26 28 35 37
|
syl3anc |
|
39 |
3 10 11 4 21 36 22
|
dvhfplusr |
|
40 |
39
|
3ad2ant1 |
|
41 |
40
|
oveqd |
|
42 |
41
|
fveq1d |
|
43 |
|
eqid |
|
44 |
1 2 3 43 10 5
|
dicelval1sta |
|
45 |
44
|
3adant3r |
|
46 |
1 2 3 43 10 5
|
dicelval1sta |
|
47 |
46
|
3adant3l |
|
48 |
45 47
|
coeq12d |
|
49 |
38 42 48
|
3eqtr4rd |
|
50 |
3 10 11 36
|
tendoplcl |
|
51 |
7 26 28 50
|
syl3anc |
|
52 |
41 51
|
eqeltrd |
|
53 |
|
fvex |
|
54 |
|
fvex |
|
55 |
53 54
|
coex |
|
56 |
|
ovex |
|
57 |
1 2 3 43 10 11 5 55 56
|
dicopelval |
|
58 |
57
|
3adant3 |
|
59 |
49 52 58
|
mpbir2and |
|
60 |
24 59
|
eqeltrd |
|