| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicvaddcl.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | dicvaddcl.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | dicvaddcl.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dicvaddcl.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | dicvaddcl.i |  |-  I = ( ( DIsoC ` K ) ` W ) | 
						
							| 6 |  | dicvaddcl.p |  |-  .+ = ( +g ` U ) | 
						
							| 7 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 9 | 1 2 3 5 4 8 | dicssdvh |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) C_ ( Base ` U ) ) | 
						
							| 10 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 11 |  | eqid |  |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) | 
						
							| 12 | 3 10 11 4 8 | dvhvbase |  |-  ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) = ( Base ` U ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) = ( Base ` U ) ) | 
						
							| 15 | 9 14 | sseqtrrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 16 | 15 | 3adant3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( I ` Q ) C_ ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 17 |  | simp3l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> X e. ( I ` Q ) ) | 
						
							| 18 | 16 17 | sseldd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> X e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 19 |  | simp3r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> Y e. ( I ` Q ) ) | 
						
							| 20 | 16 19 | sseldd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> Y e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) | 
						
							| 21 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 22 |  | eqid |  |-  ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) | 
						
							| 23 | 3 10 11 4 21 6 22 | dvhvadd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) /\ Y e. ( ( ( LTrn ` K ) ` W ) X. ( ( TEndo ` K ) ` W ) ) ) ) -> ( X .+ Y ) = <. ( ( 1st ` X ) o. ( 1st ` Y ) ) , ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) >. ) | 
						
							| 24 | 7 18 20 23 | syl12anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( X .+ Y ) = <. ( ( 1st ` X ) o. ( 1st ` Y ) ) , ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) >. ) | 
						
							| 25 | 1 2 3 11 5 | dicelval2nd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ X e. ( I ` Q ) ) -> ( 2nd ` X ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 26 | 25 | 3adant3r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( 2nd ` X ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 27 | 1 2 3 11 5 | dicelval2nd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 28 | 27 | 3adant3l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 29 |  | eqid |  |-  ( oc ` K ) = ( oc ` K ) | 
						
							| 30 | 1 29 2 3 | lhpocnel |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) | 
						
							| 31 | 30 | 3ad2ant1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) | 
						
							| 32 |  | simp2 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 33 |  | eqid |  |-  ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) | 
						
							| 34 | 1 2 3 10 33 | ltrniotacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 35 | 7 31 32 34 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 36 |  | eqid |  |-  ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) | 
						
							| 37 | 10 36 | tendospdi2 |  |-  ( ( ( 2nd ` X ) e. ( ( TEndo ` K ) ` W ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) /\ ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( 2nd ` X ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( ( ( 2nd ` X ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) o. ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) ) | 
						
							| 38 | 26 28 35 37 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( ( 2nd ` X ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( ( ( 2nd ` X ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) o. ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) ) | 
						
							| 39 | 3 10 11 4 21 36 22 | dvhfplusr |  |-  ( ( K e. HL /\ W e. H ) -> ( +g ` ( Scalar ` U ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( +g ` ( Scalar ` U ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ) | 
						
							| 41 | 40 | oveqd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) = ( ( 2nd ` X ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( 2nd ` Y ) ) ) | 
						
							| 42 | 41 | fveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( ( ( 2nd ` X ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 43 |  | eqid |  |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) | 
						
							| 44 | 1 2 3 43 10 5 | dicelval1sta |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ X e. ( I ` Q ) ) -> ( 1st ` X ) = ( ( 2nd ` X ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 45 | 44 | 3adant3r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( 1st ` X ) = ( ( 2nd ` X ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 46 | 1 2 3 43 10 5 | dicelval1sta |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 47 | 46 | 3adant3l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 48 | 45 47 | coeq12d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( 1st ` X ) o. ( 1st ` Y ) ) = ( ( ( 2nd ` X ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) o. ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) ) | 
						
							| 49 | 38 42 48 | 3eqtr4rd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( 1st ` X ) o. ( 1st ` Y ) ) = ( ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 50 | 3 10 11 36 | tendoplcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( 2nd ` X ) e. ( ( TEndo ` K ) ` W ) /\ ( 2nd ` Y ) e. ( ( TEndo ` K ) ` W ) ) -> ( ( 2nd ` X ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( 2nd ` Y ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 51 | 7 26 28 50 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( 2nd ` X ) ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( h e. ( ( LTrn ` K ) ` W ) |-> ( ( s ` h ) o. ( t ` h ) ) ) ) ( 2nd ` Y ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 52 | 41 51 | eqeltrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 53 |  | fvex |  |-  ( 1st ` X ) e. _V | 
						
							| 54 |  | fvex |  |-  ( 1st ` Y ) e. _V | 
						
							| 55 | 53 54 | coex |  |-  ( ( 1st ` X ) o. ( 1st ` Y ) ) e. _V | 
						
							| 56 |  | ovex |  |-  ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) e. _V | 
						
							| 57 | 1 2 3 43 10 11 5 55 56 | dicopelval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. ( ( 1st ` X ) o. ( 1st ` Y ) ) , ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) >. e. ( I ` Q ) <-> ( ( ( 1st ` X ) o. ( 1st ` Y ) ) = ( ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) e. ( ( TEndo ` K ) ` W ) ) ) ) | 
						
							| 58 | 57 | 3adant3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( <. ( ( 1st ` X ) o. ( 1st ` Y ) ) , ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) >. e. ( I ` Q ) <-> ( ( ( 1st ` X ) o. ( 1st ` Y ) ) = ( ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) e. ( ( TEndo ` K ) ` W ) ) ) ) | 
						
							| 59 | 49 52 58 | mpbir2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> <. ( ( 1st ` X ) o. ( 1st ` Y ) ) , ( ( 2nd ` X ) ( +g ` ( Scalar ` U ) ) ( 2nd ` Y ) ) >. e. ( I ` Q ) ) | 
						
							| 60 | 24 59 | eqeltrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. ( I ` Q ) /\ Y e. ( I ` Q ) ) ) -> ( X .+ Y ) e. ( I ` Q ) ) |