Step |
Hyp |
Ref |
Expression |
1 |
|
dicvscacl.l |
|- .<_ = ( le ` K ) |
2 |
|
dicvscacl.a |
|- A = ( Atoms ` K ) |
3 |
|
dicvscacl.h |
|- H = ( LHyp ` K ) |
4 |
|
dicvscacl.e |
|- E = ( ( TEndo ` K ) ` W ) |
5 |
|
dicvscacl.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dicvscacl.i |
|- I = ( ( DIsoC ` K ) ` W ) |
7 |
|
dicvscacl.s |
|- .x. = ( .s ` U ) |
8 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> X e. E ) |
10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
11 |
1 2 3 6 5 10
|
dicssdvh |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) C_ ( Base ` U ) ) |
12 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
13 |
3 12 4 5 10
|
dvhvbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( ( ( LTrn ` K ) ` W ) X. E ) ) |
14 |
13
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( LTrn ` K ) ` W ) X. E ) = ( Base ` U ) ) |
15 |
14
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( LTrn ` K ) ` W ) X. E ) = ( Base ` U ) ) |
16 |
11 15
|
sseqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) C_ ( ( ( LTrn ` K ) ` W ) X. E ) ) |
17 |
16
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( I ` Q ) C_ ( ( ( LTrn ` K ) ` W ) X. E ) ) |
18 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> Y e. ( I ` Q ) ) |
19 |
17 18
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> Y e. ( ( ( LTrn ` K ) ` W ) X. E ) ) |
20 |
3 12 4 5 7
|
dvhvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. E /\ Y e. ( ( ( LTrn ` K ) ` W ) X. E ) ) ) -> ( X .x. Y ) = <. ( X ` ( 1st ` Y ) ) , ( X o. ( 2nd ` Y ) ) >. ) |
21 |
8 9 19 20
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X .x. Y ) = <. ( X ` ( 1st ` Y ) ) , ( X o. ( 2nd ` Y ) ) >. ) |
22 |
|
fvi |
|- ( X e. E -> ( _I ` X ) = X ) |
23 |
9 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( _I ` X ) = X ) |
24 |
23
|
coeq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( ( _I ` X ) o. ( 2nd ` Y ) ) = ( X o. ( 2nd ` Y ) ) ) |
25 |
24
|
opeq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> <. ( X ` ( 1st ` Y ) ) , ( ( _I ` X ) o. ( 2nd ` Y ) ) >. = <. ( X ` ( 1st ` Y ) ) , ( X o. ( 2nd ` Y ) ) >. ) |
26 |
21 25
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X .x. Y ) = <. ( X ` ( 1st ` Y ) ) , ( ( _I ` X ) o. ( 2nd ` Y ) ) >. ) |
27 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
28 |
1 2 3 27 12 6
|
dicelval1sta |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
29 |
28
|
3adant3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( 1st ` Y ) = ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
30 |
29
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X ` ( 1st ` Y ) ) = ( X ` ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) ) |
31 |
1 2 3 4 6
|
dicelval2nd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Y e. ( I ` Q ) ) -> ( 2nd ` Y ) e. E ) |
32 |
31
|
3adant3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( 2nd ` Y ) e. E ) |
33 |
3 12 4
|
tendof |
|- ( ( ( K e. HL /\ W e. H ) /\ ( 2nd ` Y ) e. E ) -> ( 2nd ` Y ) : ( ( LTrn ` K ) ` W ) --> ( ( LTrn ` K ) ` W ) ) |
34 |
8 32 33
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( 2nd ` Y ) : ( ( LTrn ` K ) ` W ) --> ( ( LTrn ` K ) ` W ) ) |
35 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
36 |
1 35 2 3
|
lhpocnel |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
37 |
36
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
38 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
39 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) |
40 |
1 2 3 12 39
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
41 |
8 37 38 40
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
42 |
|
fvco3 |
|- ( ( ( 2nd ` Y ) : ( ( LTrn ` K ) ` W ) --> ( ( LTrn ` K ) ` W ) /\ ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( X o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( X ` ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) ) |
43 |
34 41 42
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( ( X o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( X ` ( ( 2nd ` Y ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) ) |
44 |
30 43
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X ` ( 1st ` Y ) ) = ( ( X o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
45 |
24
|
fveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( ( ( _I ` X ) o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( ( X o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
46 |
44 45
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X ` ( 1st ` Y ) ) = ( ( ( _I ` X ) o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
47 |
3 4
|
tendococl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. E /\ ( 2nd ` Y ) e. E ) -> ( X o. ( 2nd ` Y ) ) e. E ) |
48 |
8 9 32 47
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X o. ( 2nd ` Y ) ) e. E ) |
49 |
24 48
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( ( _I ` X ) o. ( 2nd ` Y ) ) e. E ) |
50 |
|
fvex |
|- ( X ` ( 1st ` Y ) ) e. _V |
51 |
|
fvex |
|- ( _I ` X ) e. _V |
52 |
|
fvex |
|- ( 2nd ` Y ) e. _V |
53 |
51 52
|
coex |
|- ( ( _I ` X ) o. ( 2nd ` Y ) ) e. _V |
54 |
1 2 3 27 12 4 6 50 53
|
dicopelval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. ( X ` ( 1st ` Y ) ) , ( ( _I ` X ) o. ( 2nd ` Y ) ) >. e. ( I ` Q ) <-> ( ( X ` ( 1st ` Y ) ) = ( ( ( _I ` X ) o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( ( _I ` X ) o. ( 2nd ` Y ) ) e. E ) ) ) |
55 |
54
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( <. ( X ` ( 1st ` Y ) ) , ( ( _I ` X ) o. ( 2nd ` Y ) ) >. e. ( I ` Q ) <-> ( ( X ` ( 1st ` Y ) ) = ( ( ( _I ` X ) o. ( 2nd ` Y ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( ( _I ` X ) o. ( 2nd ` Y ) ) e. E ) ) ) |
56 |
46 49 55
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> <. ( X ` ( 1st ` Y ) ) , ( ( _I ` X ) o. ( 2nd ` Y ) ) >. e. ( I ` Q ) ) |
57 |
26 56
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( X e. E /\ Y e. ( I ` Q ) ) ) -> ( X .x. Y ) e. ( I ` Q ) ) |