| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dicn0.l |
|- .<_ = ( le ` K ) |
| 2 |
|
dicn0.a |
|- A = ( Atoms ` K ) |
| 3 |
|
dicn0.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dicn0.i |
|- I = ( ( DIsoC ` K ) ` W ) |
| 5 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 7 |
1 6 2 3
|
lhpocnel |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
| 8 |
7
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
| 9 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 10 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 11 |
|
eqid |
|- ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) |
| 12 |
1 2 3 10 11
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
| 13 |
5 8 9 12
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) |
| 14 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
| 15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 16 |
14 15
|
tendo02 |
|- ( ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) -> ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( _I |` ( Base ` K ) ) ) |
| 17 |
13 16
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( _I |` ( Base ` K ) ) ) |
| 18 |
17
|
eqcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( _I |` ( Base ` K ) ) = ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) |
| 19 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 20 |
15 3 10 19 14
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) |
| 21 |
20
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) |
| 22 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
| 23 |
|
fvex |
|- ( Base ` K ) e. _V |
| 24 |
|
resiexg |
|- ( ( Base ` K ) e. _V -> ( _I |` ( Base ` K ) ) e. _V ) |
| 25 |
23 24
|
ax-mp |
|- ( _I |` ( Base ` K ) ) e. _V |
| 26 |
|
fvex |
|- ( ( LTrn ` K ) ` W ) e. _V |
| 27 |
26
|
mptex |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. _V |
| 28 |
1 2 3 22 10 19 4 25 27
|
dicopelval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. e. ( I ` Q ) <-> ( ( _I |` ( Base ` K ) ) = ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) ) ) |
| 29 |
18 21 28
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. e. ( I ` Q ) ) |
| 30 |
29
|
ne0d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) =/= (/) ) |