| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicn0.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | dicn0.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | dicn0.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dicn0.i |  |-  I = ( ( DIsoC ` K ) ` W ) | 
						
							| 5 |  | simpl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | eqid |  |-  ( oc ` K ) = ( oc ` K ) | 
						
							| 7 | 1 6 2 3 | lhpocnel |  |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) | 
						
							| 9 |  | simpr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) | 
						
							| 10 |  | eqid |  |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) | 
						
							| 11 |  | eqid |  |-  ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) | 
						
							| 12 | 1 2 3 10 11 | ltrniotacl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 13 | 5 8 9 12 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) ) | 
						
							| 14 |  | eqid |  |-  ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 16 | 14 15 | tendo02 |  |-  ( ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) -> ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( _I |` ( Base ` K ) ) ) | 
						
							| 17 | 13 16 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( _I |` ( Base ` K ) ) ) | 
						
							| 18 | 17 | eqcomd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( _I |` ( Base ` K ) ) = ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) ) | 
						
							| 19 |  | eqid |  |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) | 
						
							| 20 | 15 3 10 19 14 | tendo0cl |  |-  ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) | 
						
							| 22 |  | eqid |  |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) | 
						
							| 23 |  | fvex |  |-  ( Base ` K ) e. _V | 
						
							| 24 |  | resiexg |  |-  ( ( Base ` K ) e. _V -> ( _I |` ( Base ` K ) ) e. _V ) | 
						
							| 25 | 23 24 | ax-mp |  |-  ( _I |` ( Base ` K ) ) e. _V | 
						
							| 26 |  | fvex |  |-  ( ( LTrn ` K ) ` W ) e. _V | 
						
							| 27 | 26 | mptex |  |-  ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. _V | 
						
							| 28 | 1 2 3 22 10 19 4 25 27 | dicopelval |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. e. ( I ` Q ) <-> ( ( _I |` ( Base ` K ) ) = ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) ) ) | 
						
							| 29 | 18 21 28 | mpbir2and |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. e. ( I ` Q ) ) | 
						
							| 30 | 29 | ne0d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) =/= (/) ) |