Metamath Proof Explorer


Theorem dicn0

Description: The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014)

Ref Expression
Hypotheses dicn0.l
|- .<_ = ( le ` K )
dicn0.a
|- A = ( Atoms ` K )
dicn0.h
|- H = ( LHyp ` K )
dicn0.i
|- I = ( ( DIsoC ` K ) ` W )
Assertion dicn0
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) =/= (/) )

Proof

Step Hyp Ref Expression
1 dicn0.l
 |-  .<_ = ( le ` K )
2 dicn0.a
 |-  A = ( Atoms ` K )
3 dicn0.h
 |-  H = ( LHyp ` K )
4 dicn0.i
 |-  I = ( ( DIsoC ` K ) ` W )
5 simpl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) )
6 eqid
 |-  ( oc ` K ) = ( oc ` K )
7 1 6 2 3 lhpocnel
 |-  ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) )
8 7 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) )
9 simpr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) )
10 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
11 eqid
 |-  ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q )
12 1 2 3 10 11 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) )
13 5 8 9 12 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) )
14 eqid
 |-  ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) )
15 eqid
 |-  ( Base ` K ) = ( Base ` K )
16 14 15 tendo02
 |-  ( ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) e. ( ( LTrn ` K ) ` W ) -> ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( _I |` ( Base ` K ) ) )
17 13 16 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) = ( _I |` ( Base ` K ) ) )
18 17 eqcomd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( _I |` ( Base ` K ) ) = ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) )
19 eqid
 |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W )
20 15 3 10 19 14 tendo0cl
 |-  ( ( K e. HL /\ W e. H ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) )
21 20 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) )
22 eqid
 |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W )
23 fvex
 |-  ( Base ` K ) e. _V
24 resiexg
 |-  ( ( Base ` K ) e. _V -> ( _I |` ( Base ` K ) ) e. _V )
25 23 24 ax-mp
 |-  ( _I |` ( Base ` K ) ) e. _V
26 fvex
 |-  ( ( LTrn ` K ) ` W ) e. _V
27 26 mptex
 |-  ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. _V
28 1 2 3 22 10 19 4 25 27 dicopelval
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. e. ( I ` Q ) <-> ( ( _I |` ( Base ` K ) ) = ( ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) ` ( iota_ g e. ( ( LTrn ` K ) ` W ) ( g ` ( ( oc ` K ) ` W ) ) = Q ) ) /\ ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. ( ( TEndo ` K ) ` W ) ) ) )
29 18 21 28 mpbir2and
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. e. ( I ` Q ) )
30 29 ne0d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) =/= (/) )