Metamath Proof Explorer


Theorem dicn0

Description: The value of the partial isomorphism C is not empty. (Contributed by NM, 15-Feb-2014)

Ref Expression
Hypotheses dicn0.l = ( le ‘ 𝐾 )
dicn0.a 𝐴 = ( Atoms ‘ 𝐾 )
dicn0.h 𝐻 = ( LHyp ‘ 𝐾 )
dicn0.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion dicn0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 dicn0.l = ( le ‘ 𝐾 )
2 dicn0.a 𝐴 = ( Atoms ‘ 𝐾 )
3 dicn0.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dicn0.i 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
5 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
7 1 6 2 3 lhpocnel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
8 7 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) )
9 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
10 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 )
12 1 2 3 10 11 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ 𝐴 ∧ ¬ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
13 5 8 9 12 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
14 eqid ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) = ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 14 15 tendo02 ( ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) → ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) )
17 13 16 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) )
18 17 eqcomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( I ↾ ( Base ‘ 𝐾 ) ) = ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) )
19 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
20 15 3 10 19 14 tendo0cl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
21 20 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
22 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
23 fvex ( Base ‘ 𝐾 ) ∈ V
24 resiexg ( ( Base ‘ 𝐾 ) ∈ V → ( I ↾ ( Base ‘ 𝐾 ) ) ∈ V )
25 23 24 ax-mp ( I ↾ ( Base ‘ 𝐾 ) ) ∈ V
26 fvex ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∈ V
27 26 mptex ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ V
28 1 2 3 22 10 19 4 25 27 dicopelval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ∈ ( 𝐼𝑄 ) ↔ ( ( I ↾ ( Base ‘ 𝐾 ) ) = ( ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ‘ ( 𝑔 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) ) ∧ ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) )
29 18 21 28 mpbir2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ ( Base ‘ 𝐾 ) ) ) ⟩ ∈ ( 𝐼𝑄 ) )
30 29 ne0d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐼𝑄 ) ≠ ∅ )