| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dicn0.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | dicn0.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | dicn0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 4 |  | dicn0.i | ⊢ 𝐼  =  ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | simpl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 7 | 1 6 2 3 | lhpocnel | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  𝐴  ∧  ¬  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  𝑊 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  𝐴  ∧  ¬  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  𝑊 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  =  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) | 
						
							| 12 | 1 2 3 10 11 | ltrniotacl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ∈  𝐴  ∧  ¬  ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 13 | 5 8 9 12 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) )  =  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 16 | 14 15 | tendo02 | ⊢ ( ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 )  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  →  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  =  (  I   ↾  ( Base ‘ 𝐾 ) ) ) | 
						
							| 17 | 13 16 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  =  (  I   ↾  ( Base ‘ 𝐾 ) ) ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  (  I   ↾  ( Base ‘ 𝐾 ) )  =  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 | 15 3 10 19 14 | tendo0cl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) )  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) )  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 22 |  | eqid | ⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 23 |  | fvex | ⊢ ( Base ‘ 𝐾 )  ∈  V | 
						
							| 24 |  | resiexg | ⊢ ( ( Base ‘ 𝐾 )  ∈  V  →  (  I   ↾  ( Base ‘ 𝐾 ) )  ∈  V ) | 
						
							| 25 | 23 24 | ax-mp | ⊢ (  I   ↾  ( Base ‘ 𝐾 ) )  ∈  V | 
						
							| 26 |  | fvex | ⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ∈  V | 
						
							| 27 | 26 | mptex | ⊢ ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) )  ∈  V | 
						
							| 28 | 1 2 3 22 10 19 4 25 27 | dicopelval | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) 〉  ∈  ( 𝐼 ‘ 𝑄 )  ↔  ( (  I   ↾  ( Base ‘ 𝐾 ) )  =  ( ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) ‘ ( ℩ 𝑔  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑔 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) )  =  𝑄 ) )  ∧  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) )  ∈  ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 29 | 18 21 28 | mpbir2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  〈 (  I   ↾  ( Base ‘ 𝐾 ) ) ,  ( 𝑓  ∈  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )  ↦  (  I   ↾  ( Base ‘ 𝐾 ) ) ) 〉  ∈  ( 𝐼 ‘ 𝑄 ) ) | 
						
							| 30 | 29 | ne0d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝐼 ‘ 𝑄 )  ≠  ∅ ) |