| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvhfvsca.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dvhfvsca.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 3 |  | dvhfvsca.e |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 4 |  | dvhfvsca.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | dvhfvsca.s |  |-  .x. = ( .s ` U ) | 
						
							| 6 | 1 2 3 4 5 | dvhfvsca |  |-  ( ( K e. V /\ W e. H ) -> .x. = ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) | 
						
							| 7 | 6 | oveqd |  |-  ( ( K e. V /\ W e. H ) -> ( R .x. F ) = ( R ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) F ) ) | 
						
							| 8 |  | eqid |  |-  ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) | 
						
							| 9 | 8 | dvhvscaval |  |-  ( ( R e. E /\ F e. ( T X. E ) ) -> ( R ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) F ) = <. ( R ` ( 1st ` F ) ) , ( R o. ( 2nd ` F ) ) >. ) | 
						
							| 10 | 7 9 | sylan9eq |  |-  ( ( ( K e. V /\ W e. H ) /\ ( R e. E /\ F e. ( T X. E ) ) ) -> ( R .x. F ) = <. ( R ` ( 1st ` F ) ) , ( R o. ( 2nd ` F ) ) >. ) |