Metamath Proof Explorer


Theorem dvhvsca

Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 2-Nov-2013)

Ref Expression
Hypotheses dvhfvsca.h H = LHyp K
dvhfvsca.t T = LTrn K W
dvhfvsca.e E = TEndo K W
dvhfvsca.u U = DVecH K W
dvhfvsca.s · ˙ = U
Assertion dvhvsca K V W H R E F T × E R · ˙ F = R 1 st F R 2 nd F

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H = LHyp K
2 dvhfvsca.t T = LTrn K W
3 dvhfvsca.e E = TEndo K W
4 dvhfvsca.u U = DVecH K W
5 dvhfvsca.s · ˙ = U
6 1 2 3 4 5 dvhfvsca K V W H · ˙ = s E , f T × E s 1 st f s 2 nd f
7 6 oveqd K V W H R · ˙ F = R s E , f T × E s 1 st f s 2 nd f F
8 eqid s E , f T × E s 1 st f s 2 nd f = s E , f T × E s 1 st f s 2 nd f
9 8 dvhvscaval R E F T × E R s E , f T × E s 1 st f s 2 nd f F = R 1 st F R 2 nd F
10 7 9 sylan9eq K V W H R E F T × E R · ˙ F = R 1 st F R 2 nd F