Metamath Proof Explorer


Theorem dvhvscaval

Description: The scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Nov-2013)

Ref Expression
Hypothesis dvhvscaval.s · ˙ = s E , f T × E s 1 st f s 2 nd f
Assertion dvhvscaval U E F T × E U · ˙ F = U 1 st F U 2 nd F

Proof

Step Hyp Ref Expression
1 dvhvscaval.s · ˙ = s E , f T × E s 1 st f s 2 nd f
2 fveq1 t = U t 1 st g = U 1 st g
3 coeq1 t = U t 2 nd g = U 2 nd g
4 2 3 opeq12d t = U t 1 st g t 2 nd g = U 1 st g U 2 nd g
5 2fveq3 g = F U 1 st g = U 1 st F
6 fveq2 g = F 2 nd g = 2 nd F
7 6 coeq2d g = F U 2 nd g = U 2 nd F
8 5 7 opeq12d g = F U 1 st g U 2 nd g = U 1 st F U 2 nd F
9 1 dvhvscacbv · ˙ = t E , g T × E t 1 st g t 2 nd g
10 opex U 1 st F U 2 nd F V
11 4 8 9 10 ovmpo U E F T × E U · ˙ F = U 1 st F U 2 nd F