Metamath Proof Explorer


Theorem dvhopvsca

Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dvhfvsca.h H = LHyp K
dvhfvsca.t T = LTrn K W
dvhfvsca.e E = TEndo K W
dvhfvsca.u U = DVecH K W
dvhfvsca.s · ˙ = U
Assertion dvhopvsca K V W H R E F T X E R · ˙ F X = R F R X

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H = LHyp K
2 dvhfvsca.t T = LTrn K W
3 dvhfvsca.e E = TEndo K W
4 dvhfvsca.u U = DVecH K W
5 dvhfvsca.s · ˙ = U
6 simpl K V W H R E F T X E K V W H
7 simpr1 K V W H R E F T X E R E
8 simpr2 K V W H R E F T X E F T
9 simpr3 K V W H R E F T X E X E
10 opelxpi F T X E F X T × E
11 8 9 10 syl2anc K V W H R E F T X E F X T × E
12 1 2 3 4 5 dvhvsca K V W H R E F X T × E R · ˙ F X = R 1 st F X R 2 nd F X
13 6 7 11 12 syl12anc K V W H R E F T X E R · ˙ F X = R 1 st F X R 2 nd F X
14 op1stg F T X E 1 st F X = F
15 8 9 14 syl2anc K V W H R E F T X E 1 st F X = F
16 15 fveq2d K V W H R E F T X E R 1 st F X = R F
17 op2ndg F T X E 2 nd F X = X
18 8 9 17 syl2anc K V W H R E F T X E 2 nd F X = X
19 18 coeq2d K V W H R E F T X E R 2 nd F X = R X
20 16 19 opeq12d K V W H R E F T X E R 1 st F X R 2 nd F X = R F R X
21 13 20 eqtrd K V W H R E F T X E R · ˙ F X = R F R X