Metamath Proof Explorer


Theorem dvhopvsca

Description: Scalar product operation for the constructed full vector space H. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dvhfvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhfvsca.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhfvsca.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhfvsca.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhfvsca.s · = ( ·𝑠𝑈 )
Assertion dvhopvsca ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 𝑅 ·𝐹 , 𝑋 ⟩ ) = ⟨ ( 𝑅𝐹 ) , ( 𝑅𝑋 ) ⟩ )

Proof

Step Hyp Ref Expression
1 dvhfvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhfvsca.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvhfvsca.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvhfvsca.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dvhfvsca.s · = ( ·𝑠𝑈 )
6 simpl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 𝐾𝑉𝑊𝐻 ) )
7 simpr1 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → 𝑅𝐸 )
8 simpr2 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → 𝐹𝑇 )
9 simpr3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → 𝑋𝐸 )
10 opelxpi ( ( 𝐹𝑇𝑋𝐸 ) → ⟨ 𝐹 , 𝑋 ⟩ ∈ ( 𝑇 × 𝐸 ) )
11 8 9 10 syl2anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ⟨ 𝐹 , 𝑋 ⟩ ∈ ( 𝑇 × 𝐸 ) )
12 1 2 3 4 5 dvhvsca ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸 ∧ ⟨ 𝐹 , 𝑋 ⟩ ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 ·𝐹 , 𝑋 ⟩ ) = ⟨ ( 𝑅 ‘ ( 1st ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) , ( 𝑅 ∘ ( 2nd ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) ⟩ )
13 6 7 11 12 syl12anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 𝑅 ·𝐹 , 𝑋 ⟩ ) = ⟨ ( 𝑅 ‘ ( 1st ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) , ( 𝑅 ∘ ( 2nd ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) ⟩ )
14 op1stg ( ( 𝐹𝑇𝑋𝐸 ) → ( 1st ‘ ⟨ 𝐹 , 𝑋 ⟩ ) = 𝐹 )
15 8 9 14 syl2anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 1st ‘ ⟨ 𝐹 , 𝑋 ⟩ ) = 𝐹 )
16 15 fveq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 𝑅 ‘ ( 1st ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) = ( 𝑅𝐹 ) )
17 op2ndg ( ( 𝐹𝑇𝑋𝐸 ) → ( 2nd ‘ ⟨ 𝐹 , 𝑋 ⟩ ) = 𝑋 )
18 8 9 17 syl2anc ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 2nd ‘ ⟨ 𝐹 , 𝑋 ⟩ ) = 𝑋 )
19 18 coeq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 𝑅 ∘ ( 2nd ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) = ( 𝑅𝑋 ) )
20 16 19 opeq12d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ⟨ ( 𝑅 ‘ ( 1st ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) , ( 𝑅 ∘ ( 2nd ‘ ⟨ 𝐹 , 𝑋 ⟩ ) ) ⟩ = ⟨ ( 𝑅𝐹 ) , ( 𝑅𝑋 ) ⟩ )
21 13 20 eqtrd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑅𝐸𝐹𝑇𝑋𝐸 ) ) → ( 𝑅 ·𝐹 , 𝑋 ⟩ ) = ⟨ ( 𝑅𝐹 ) , ( 𝑅𝑋 ) ⟩ )