Step |
Hyp |
Ref |
Expression |
1 |
|
dvhfvsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhfvsca.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhfvsca.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhfvsca.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvhfvsca.s |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → 𝑅 ∈ 𝐸 ) |
8 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → 𝐹 ∈ 𝑇 ) |
9 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → 𝑋 ∈ 𝐸 ) |
10 |
|
opelxpi |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) → 〈 𝐹 , 𝑋 〉 ∈ ( 𝑇 × 𝐸 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → 〈 𝐹 , 𝑋 〉 ∈ ( 𝑇 × 𝐸 ) ) |
12 |
1 2 3 4 5
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 〈 𝐹 , 𝑋 〉 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 · 〈 𝐹 , 𝑋 〉 ) = 〈 ( 𝑅 ‘ ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) ) , ( 𝑅 ∘ ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) ) 〉 ) |
13 |
6 7 11 12
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 𝑅 · 〈 𝐹 , 𝑋 〉 ) = 〈 ( 𝑅 ‘ ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) ) , ( 𝑅 ∘ ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) ) 〉 ) |
14 |
|
op1stg |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) → ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) = 𝐹 ) |
15 |
8 9 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) = 𝐹 ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 𝑅 ‘ ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) ) = ( 𝑅 ‘ 𝐹 ) ) |
17 |
|
op2ndg |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) → ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) = 𝑋 ) |
18 |
8 9 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) = 𝑋 ) |
19 |
18
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 𝑅 ∘ ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) ) = ( 𝑅 ∘ 𝑋 ) ) |
20 |
16 19
|
opeq12d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → 〈 ( 𝑅 ‘ ( 1st ‘ 〈 𝐹 , 𝑋 〉 ) ) , ( 𝑅 ∘ ( 2nd ‘ 〈 𝐹 , 𝑋 〉 ) ) 〉 = 〈 ( 𝑅 ‘ 𝐹 ) , ( 𝑅 ∘ 𝑋 ) 〉 ) |
21 |
13 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝑋 ∈ 𝐸 ) ) → ( 𝑅 · 〈 𝐹 , 𝑋 〉 ) = 〈 ( 𝑅 ‘ 𝐹 ) , ( 𝑅 ∘ 𝑋 ) 〉 ) |