Step |
Hyp |
Ref |
Expression |
1 |
|
dvhfvsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhfvsca.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhfvsca.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhfvsca.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvhfvsca.s |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
1 2 3 4 5
|
dvhvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 · 𝐹 ) = 〈 ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) , ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) 〉 ) |
7 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → 𝑅 ∈ 𝐸 ) |
9 |
|
xp1st |
⊢ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) → ( 1st ‘ 𝐹 ) ∈ 𝑇 ) |
10 |
9
|
ad2antll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 1st ‘ 𝐹 ) ∈ 𝑇 ) |
11 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐸 ∧ ( 1st ‘ 𝐹 ) ∈ 𝑇 ) → ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) ∈ 𝑇 ) |
12 |
7 8 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) ∈ 𝑇 ) |
13 |
|
xp2nd |
⊢ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) → ( 2nd ‘ 𝐹 ) ∈ 𝐸 ) |
14 |
13
|
ad2antll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 2nd ‘ 𝐹 ) ∈ 𝐸 ) |
15 |
1 3
|
tendococl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑅 ∈ 𝐸 ∧ ( 2nd ‘ 𝐹 ) ∈ 𝐸 ) → ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) ∈ 𝐸 ) |
16 |
7 8 14 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) ∈ 𝐸 ) |
17 |
|
opelxpi |
⊢ ( ( ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) ∈ 𝑇 ∧ ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) ∈ 𝐸 ) → 〈 ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) , ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) 〉 ∈ ( 𝑇 × 𝐸 ) ) |
18 |
12 16 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → 〈 ( 𝑅 ‘ ( 1st ‘ 𝐹 ) ) , ( 𝑅 ∘ ( 2nd ‘ 𝐹 ) ) 〉 ∈ ( 𝑇 × 𝐸 ) ) |
19 |
6 18
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝐹 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝑅 · 𝐹 ) ∈ ( 𝑇 × 𝐸 ) ) |