Metamath Proof Explorer


Theorem dvhvscacl

Description: Closure of the scalar product operation for the constructed full vector space H. (Contributed by NM, 12-Feb-2014)

Ref Expression
Hypotheses dvhfvsca.h H = LHyp K
dvhfvsca.t T = LTrn K W
dvhfvsca.e E = TEndo K W
dvhfvsca.u U = DVecH K W
dvhfvsca.s · ˙ = U
Assertion dvhvscacl K HL W H R E F T × E R · ˙ F T × E

Proof

Step Hyp Ref Expression
1 dvhfvsca.h H = LHyp K
2 dvhfvsca.t T = LTrn K W
3 dvhfvsca.e E = TEndo K W
4 dvhfvsca.u U = DVecH K W
5 dvhfvsca.s · ˙ = U
6 1 2 3 4 5 dvhvsca K HL W H R E F T × E R · ˙ F = R 1 st F R 2 nd F
7 simpl K HL W H R E F T × E K HL W H
8 simprl K HL W H R E F T × E R E
9 xp1st F T × E 1 st F T
10 9 ad2antll K HL W H R E F T × E 1 st F T
11 1 2 3 tendocl K HL W H R E 1 st F T R 1 st F T
12 7 8 10 11 syl3anc K HL W H R E F T × E R 1 st F T
13 xp2nd F T × E 2 nd F E
14 13 ad2antll K HL W H R E F T × E 2 nd F E
15 1 3 tendococl K HL W H R E 2 nd F E R 2 nd F E
16 7 8 14 15 syl3anc K HL W H R E F T × E R 2 nd F E
17 opelxpi R 1 st F T R 2 nd F E R 1 st F R 2 nd F T × E
18 12 16 17 syl2anc K HL W H R E F T × E R 1 st F R 2 nd F T × E
19 6 18 eqeltrd K HL W H R E F T × E R · ˙ F T × E