Metamath Proof Explorer


Theorem tendoinvcl

Description: Closure of multiplicative inverse for endomorphism. We use the scalar inverse of the vector space since it is much simpler than the direct inverse of cdleml8 . (Contributed by NM, 10-Apr-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses tendoinv.b B = Base K
tendoinv.h H = LHyp K
tendoinv.t T = LTrn K W
tendoinv.e E = TEndo K W
tendoinv.o O = h T I B
tendoinv.u U = DVecH K W
tendoinv.f F = Scalar U
tendoinv.n N = inv r F
Assertion tendoinvcl K HL W H S E S O N S E N S O

Proof

Step Hyp Ref Expression
1 tendoinv.b B = Base K
2 tendoinv.h H = LHyp K
3 tendoinv.t T = LTrn K W
4 tendoinv.e E = TEndo K W
5 tendoinv.o O = h T I B
6 tendoinv.u U = DVecH K W
7 tendoinv.f F = Scalar U
8 tendoinv.n N = inv r F
9 eqid EDRing K W = EDRing K W
10 2 9 6 7 dvhsca K HL W H F = EDRing K W
11 2 9 erngdv K HL W H EDRing K W DivRing
12 10 11 eqeltrd K HL W H F DivRing
13 12 3ad2ant1 K HL W H S E S O F DivRing
14 simp2 K HL W H S E S O S E
15 eqid Base F = Base F
16 2 4 6 7 15 dvhbase K HL W H Base F = E
17 16 3ad2ant1 K HL W H S E S O Base F = E
18 14 17 eleqtrrd K HL W H S E S O S Base F
19 simp3 K HL W H S E S O S O
20 10 fveq2d K HL W H 0 F = 0 EDRing K W
21 eqid 0 EDRing K W = 0 EDRing K W
22 1 2 3 9 5 21 erng0g K HL W H 0 EDRing K W = O
23 20 22 eqtrd K HL W H 0 F = O
24 23 3ad2ant1 K HL W H S E S O 0 F = O
25 19 24 neeqtrrd K HL W H S E S O S 0 F
26 eqid 0 F = 0 F
27 15 26 8 drnginvrcl F DivRing S Base F S 0 F N S Base F
28 13 18 25 27 syl3anc K HL W H S E S O N S Base F
29 28 17 eleqtrd K HL W H S E S O N S E
30 15 26 8 drnginvrn0 F DivRing S Base F S 0 F N S 0 F
31 13 18 25 30 syl3anc K HL W H S E S O N S 0 F
32 31 24 neeqtrd K HL W H S E S O N S O
33 29 32 jca K HL W H S E S O N S E N S O