Metamath Proof Explorer


Theorem tendoinvcl

Description: Closure of multiplicative inverse for endomorphism. We use the scalar inverse of the vector space since it is much simpler than the direct inverse of cdleml8 . (Contributed by NM, 10-Apr-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses tendoinv.b B=BaseK
tendoinv.h H=LHypK
tendoinv.t T=LTrnKW
tendoinv.e E=TEndoKW
tendoinv.o O=hTIB
tendoinv.u U=DVecHKW
tendoinv.f F=ScalarU
tendoinv.n N=invrF
Assertion tendoinvcl KHLWHSESONSENSO

Proof

Step Hyp Ref Expression
1 tendoinv.b B=BaseK
2 tendoinv.h H=LHypK
3 tendoinv.t T=LTrnKW
4 tendoinv.e E=TEndoKW
5 tendoinv.o O=hTIB
6 tendoinv.u U=DVecHKW
7 tendoinv.f F=ScalarU
8 tendoinv.n N=invrF
9 eqid EDRingKW=EDRingKW
10 2 9 6 7 dvhsca KHLWHF=EDRingKW
11 2 9 erngdv KHLWHEDRingKWDivRing
12 10 11 eqeltrd KHLWHFDivRing
13 12 3ad2ant1 KHLWHSESOFDivRing
14 simp2 KHLWHSESOSE
15 eqid BaseF=BaseF
16 2 4 6 7 15 dvhbase KHLWHBaseF=E
17 16 3ad2ant1 KHLWHSESOBaseF=E
18 14 17 eleqtrrd KHLWHSESOSBaseF
19 simp3 KHLWHSESOSO
20 10 fveq2d KHLWH0F=0EDRingKW
21 eqid 0EDRingKW=0EDRingKW
22 1 2 3 9 5 21 erng0g KHLWH0EDRingKW=O
23 20 22 eqtrd KHLWH0F=O
24 23 3ad2ant1 KHLWHSESO0F=O
25 19 24 neeqtrrd KHLWHSESOS0F
26 eqid 0F=0F
27 15 26 8 drnginvrcl FDivRingSBaseFS0FNSBaseF
28 13 18 25 27 syl3anc KHLWHSESONSBaseF
29 28 17 eleqtrd KHLWHSESONSE
30 15 26 8 drnginvrn0 FDivRingSBaseFS0FNS0F
31 13 18 25 30 syl3anc KHLWHSESONS0F
32 31 24 neeqtrd KHLWHSESONSO
33 29 32 jca KHLWHSESONSENSO