Metamath Proof Explorer


Theorem erng0g

Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses erng0g.b B=BaseK
erng0g.h H=LHypK
erng0g.t T=LTrnKW
erng0g.d D=EDRingKW
erng0g.o O=fTIB
erng0g.z 0˙=0D
Assertion erng0g KHLWH0˙=O

Proof

Step Hyp Ref Expression
1 erng0g.b B=BaseK
2 erng0g.h H=LHypK
3 erng0g.t T=LTrnKW
4 erng0g.d D=EDRingKW
5 erng0g.o O=fTIB
6 erng0g.z 0˙=0D
7 eqid TEndoKW=TEndoKW
8 eqid +D=+D
9 2 3 7 4 8 erngfplus KHLWH+D=sTEndoKW,tTEndoKWfTsftf
10 9 oveqd KHLWHO+DO=OsTEndoKW,tTEndoKWfTsftfO
11 1 2 3 7 5 tendo0cl KHLWHOTEndoKW
12 eqid sTEndoKW,tTEndoKWfTsftf=sTEndoKW,tTEndoKWfTsftf
13 1 2 3 7 5 12 tendo0pl KHLWHOTEndoKWOsTEndoKW,tTEndoKWfTsftfO=O
14 11 13 mpdan KHLWHOsTEndoKW,tTEndoKWfTsftfO=O
15 10 14 eqtrd KHLWHO+DO=O
16 2 4 eringring KHLWHDRing
17 ringgrp DRingDGrp
18 16 17 syl KHLWHDGrp
19 eqid BaseD=BaseD
20 2 3 7 4 19 erngbase KHLWHBaseD=TEndoKW
21 11 20 eleqtrrd KHLWHOBaseD
22 19 8 6 grpid DGrpOBaseDO+DO=O0˙=O
23 18 21 22 syl2anc KHLWHO+DO=O0˙=O
24 15 23 mpbid KHLWH0˙=O