Metamath Proof Explorer


Theorem erng0g

Description: The division ring zero of an endomorphism ring. (Contributed by NM, 5-Nov-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses erng0g.b B = Base K
erng0g.h H = LHyp K
erng0g.t T = LTrn K W
erng0g.d D = EDRing K W
erng0g.o O = f T I B
erng0g.z 0 ˙ = 0 D
Assertion erng0g K HL W H 0 ˙ = O

Proof

Step Hyp Ref Expression
1 erng0g.b B = Base K
2 erng0g.h H = LHyp K
3 erng0g.t T = LTrn K W
4 erng0g.d D = EDRing K W
5 erng0g.o O = f T I B
6 erng0g.z 0 ˙ = 0 D
7 eqid TEndo K W = TEndo K W
8 eqid + D = + D
9 2 3 7 4 8 erngfplus K HL W H + D = s TEndo K W , t TEndo K W f T s f t f
10 9 oveqd K HL W H O + D O = O s TEndo K W , t TEndo K W f T s f t f O
11 1 2 3 7 5 tendo0cl K HL W H O TEndo K W
12 eqid s TEndo K W , t TEndo K W f T s f t f = s TEndo K W , t TEndo K W f T s f t f
13 1 2 3 7 5 12 tendo0pl K HL W H O TEndo K W O s TEndo K W , t TEndo K W f T s f t f O = O
14 11 13 mpdan K HL W H O s TEndo K W , t TEndo K W f T s f t f O = O
15 10 14 eqtrd K HL W H O + D O = O
16 2 4 eringring K HL W H D Ring
17 ringgrp D Ring D Grp
18 16 17 syl K HL W H D Grp
19 eqid Base D = Base D
20 2 3 7 4 19 erngbase K HL W H Base D = TEndo K W
21 11 20 eleqtrrd K HL W H O Base D
22 19 8 6 grpid D Grp O Base D O + D O = O 0 ˙ = O
23 18 21 22 syl2anc K HL W H O + D O = O 0 ˙ = O
24 15 23 mpbid K HL W H 0 ˙ = O