Metamath Proof Explorer


Theorem erng1r

Description: The division ring unit of an endomorphism ring. (Contributed by NM, 5-Nov-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses erng1r.h H = LHyp K
erng1r.t T = LTrn K W
erng1r.d D = EDRing K W
erng1r.r 1 ˙ = 1 D
Assertion erng1r K HL W H 1 ˙ = I T

Proof

Step Hyp Ref Expression
1 erng1r.h H = LHyp K
2 erng1r.t T = LTrn K W
3 erng1r.d D = EDRing K W
4 erng1r.r 1 ˙ = 1 D
5 eqid TEndo K W = TEndo K W
6 1 2 5 tendoidcl K HL W H I T TEndo K W
7 eqid Base D = Base D
8 1 2 5 3 7 erngbase K HL W H Base D = TEndo K W
9 6 8 eleqtrrd K HL W H I T Base D
10 eqid Base K = Base K
11 eqid f T I Base K = f T I Base K
12 10 1 2 5 11 tendo1ne0 K HL W H I T f T I Base K
13 eqid 0 D = 0 D
14 10 1 2 3 11 13 erng0g K HL W H 0 D = f T I Base K
15 12 14 neeqtrrd K HL W H I T 0 D
16 id K HL W H K HL W H
17 eqid D = D
18 1 2 5 3 17 erngmul K HL W H I T TEndo K W I T TEndo K W I T D I T = I T I T
19 16 6 6 18 syl12anc K HL W H I T D I T = I T I T
20 f1oi I T : T 1-1 onto T
21 f1of I T : T 1-1 onto T I T : T T
22 fcoi2 I T : T T I T I T = I T
23 20 21 22 mp2b I T I T = I T
24 19 23 eqtrdi K HL W H I T D I T = I T
25 9 15 24 3jca K HL W H I T Base D I T 0 D I T D I T = I T
26 1 3 erngdv K HL W H D DivRing
27 7 17 13 4 drngid2 D DivRing I T Base D I T 0 D I T D I T = I T 1 ˙ = I T
28 26 27 syl K HL W H I T Base D I T 0 D I T D I T = I T 1 ˙ = I T
29 25 28 mpbid K HL W H 1 ˙ = I T