Step |
Hyp |
Ref |
Expression |
1 |
|
erng1r.h |
|- H = ( LHyp ` K ) |
2 |
|
erng1r.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
erng1r.d |
|- D = ( ( EDRing ` K ) ` W ) |
4 |
|
erng1r.r |
|- .1. = ( 1r ` D ) |
5 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
6 |
1 2 5
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
7 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
8 |
1 2 5 3 7
|
erngbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` D ) = ( ( TEndo ` K ) ` W ) ) |
9 |
6 8
|
eleqtrrd |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. ( Base ` D ) ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
|
eqid |
|- ( f e. T |-> ( _I |` ( Base ` K ) ) ) = ( f e. T |-> ( _I |` ( Base ` K ) ) ) |
12 |
10 1 2 5 11
|
tendo1ne0 |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) =/= ( f e. T |-> ( _I |` ( Base ` K ) ) ) ) |
13 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
14 |
10 1 2 3 11 13
|
erng0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` D ) = ( f e. T |-> ( _I |` ( Base ` K ) ) ) ) |
15 |
12 14
|
neeqtrrd |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) =/= ( 0g ` D ) ) |
16 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
17 |
|
eqid |
|- ( .r ` D ) = ( .r ` D ) |
18 |
1 2 5 3 17
|
erngmul |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` T ) e. ( ( TEndo ` K ) ` W ) /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) ) -> ( ( _I |` T ) ( .r ` D ) ( _I |` T ) ) = ( ( _I |` T ) o. ( _I |` T ) ) ) |
19 |
16 6 6 18
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` T ) ( .r ` D ) ( _I |` T ) ) = ( ( _I |` T ) o. ( _I |` T ) ) ) |
20 |
|
f1oi |
|- ( _I |` T ) : T -1-1-onto-> T |
21 |
|
f1of |
|- ( ( _I |` T ) : T -1-1-onto-> T -> ( _I |` T ) : T --> T ) |
22 |
|
fcoi2 |
|- ( ( _I |` T ) : T --> T -> ( ( _I |` T ) o. ( _I |` T ) ) = ( _I |` T ) ) |
23 |
20 21 22
|
mp2b |
|- ( ( _I |` T ) o. ( _I |` T ) ) = ( _I |` T ) |
24 |
19 23
|
eqtrdi |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` T ) ( .r ` D ) ( _I |` T ) ) = ( _I |` T ) ) |
25 |
9 15 24
|
3jca |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` T ) e. ( Base ` D ) /\ ( _I |` T ) =/= ( 0g ` D ) /\ ( ( _I |` T ) ( .r ` D ) ( _I |` T ) ) = ( _I |` T ) ) ) |
26 |
1 3
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> D e. DivRing ) |
27 |
7 17 13 4
|
drngid2 |
|- ( D e. DivRing -> ( ( ( _I |` T ) e. ( Base ` D ) /\ ( _I |` T ) =/= ( 0g ` D ) /\ ( ( _I |` T ) ( .r ` D ) ( _I |` T ) ) = ( _I |` T ) ) <-> .1. = ( _I |` T ) ) ) |
28 |
26 27
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( _I |` T ) e. ( Base ` D ) /\ ( _I |` T ) =/= ( 0g ` D ) /\ ( ( _I |` T ) ( .r ` D ) ( _I |` T ) ) = ( _I |` T ) ) <-> .1. = ( _I |` T ) ) ) |
29 |
25 28
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> .1. = ( _I |` T ) ) |