Step |
Hyp |
Ref |
Expression |
1 |
|
drngid2.b |
|- B = ( Base ` R ) |
2 |
|
drngid2.t |
|- .x. = ( .r ` R ) |
3 |
|
drngid2.o |
|- .0. = ( 0g ` R ) |
4 |
|
drngid2.u |
|- .1. = ( 1r ` R ) |
5 |
|
df-3an |
|- ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( ( I e. B /\ I =/= .0. ) /\ ( I .x. I ) = I ) ) |
6 |
|
eldifsn |
|- ( I e. ( B \ { .0. } ) <-> ( I e. B /\ I =/= .0. ) ) |
7 |
6
|
anbi1i |
|- ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( ( I e. B /\ I =/= .0. ) /\ ( I .x. I ) = I ) ) |
8 |
5 7
|
bitr4i |
|- ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) ) |
9 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
10 |
1 3 9
|
drngmgp |
|- ( R e. DivRing -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) |
11 |
|
difss |
|- ( B \ { .0. } ) C_ B |
12 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
13 |
12 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
14 |
9 13
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
15 |
11 14
|
ax-mp |
|- ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
16 |
1
|
fvexi |
|- B e. _V |
17 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
18 |
12 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
19 |
9 18
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
20 |
16 17 19
|
mp2b |
|- .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
21 |
|
eqid |
|- ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
22 |
15 20 21
|
isgrpid2 |
|- ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp -> ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
23 |
10 22
|
syl |
|- ( R e. DivRing -> ( ( I e. ( B \ { .0. } ) /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
24 |
8 23
|
syl5bb |
|- ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
25 |
1 3 4 9
|
drngid |
|- ( R e. DivRing -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
26 |
25
|
eqeq1d |
|- ( R e. DivRing -> ( .1. = I <-> ( 0g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) = I ) ) |
27 |
24 26
|
bitr4d |
|- ( R e. DivRing -> ( ( I e. B /\ I =/= .0. /\ ( I .x. I ) = I ) <-> .1. = I ) ) |