Description: A division ring contains a multiplicative group. (Contributed by NM, 8-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmgp.b | |- B = ( Base ` R ) |
|
| drngmgp.z | |- .0. = ( 0g ` R ) |
||
| drngmgp.g | |- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
||
| Assertion | drngmgp | |- ( R e. DivRing -> G e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmgp.b | |- B = ( Base ` R ) |
|
| 2 | drngmgp.z | |- .0. = ( 0g ` R ) |
|
| 3 | drngmgp.g | |- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
|
| 4 | 1 2 3 | isdrng2 | |- ( R e. DivRing <-> ( R e. Ring /\ G e. Grp ) ) |
| 5 | 4 | simprbi | |- ( R e. DivRing -> G e. Grp ) |