Step |
Hyp |
Ref |
Expression |
1 |
|
isdrng2.b |
|- B = ( Base ` R ) |
2 |
|
isdrng2.z |
|- .0. = ( 0g ` R ) |
3 |
|
isdrng2.g |
|- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
4 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
5 |
1 4 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
6 |
|
oveq2 |
|- ( ( Unit ` R ) = ( B \ { .0. } ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
7 |
6
|
adantl |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
8 |
7 3
|
eqtr4di |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) |
9 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
10 |
4 9
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
11 |
10
|
adantr |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
12 |
8 11
|
eqeltrrd |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> G e. Grp ) |
13 |
1 4
|
unitcl |
|- ( x e. ( Unit ` R ) -> x e. B ) |
14 |
13
|
adantl |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. B ) |
15 |
|
difss |
|- ( B \ { .0. } ) C_ B |
16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
17 |
16 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
18 |
3 17
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` G ) ) |
19 |
15 18
|
ax-mp |
|- ( B \ { .0. } ) = ( Base ` G ) |
20 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
21 |
19 20
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( B \ { .0. } ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. ( B \ { .0. } ) ) |
23 |
|
eldifsn |
|- ( ( 0g ` G ) e. ( B \ { .0. } ) <-> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) |
24 |
22 23
|
sylib |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) |
25 |
24
|
simprd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) =/= .0. ) |
26 |
|
simpll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> R e. Ring ) |
27 |
22
|
eldifad |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. B ) |
28 |
|
simpr |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( Unit ` R ) ) |
29 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
30 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
31 |
1 4 29 30
|
dvrcan1 |
|- ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
32 |
26 27 28 31
|
syl3anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
33 |
1 4 29
|
dvrcl |
|- ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) |
34 |
26 27 28 33
|
syl3anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) |
35 |
1 30 2
|
ringrz |
|- ( ( R e. Ring /\ ( ( 0g ` G ) ( /r ` R ) x ) e. B ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) |
36 |
26 34 35
|
syl2anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) |
37 |
25 32 36
|
3netr4d |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) |
38 |
|
oveq2 |
|- ( x = .0. -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) |
39 |
38
|
necon3i |
|- ( ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) -> x =/= .0. ) |
40 |
37 39
|
syl |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x =/= .0. ) |
41 |
|
eldifsn |
|- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
42 |
14 40 41
|
sylanbrc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( B \ { .0. } ) ) |
43 |
42
|
ex |
|- ( ( R e. Ring /\ G e. Grp ) -> ( x e. ( Unit ` R ) -> x e. ( B \ { .0. } ) ) ) |
44 |
43
|
ssrdv |
|- ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) C_ ( B \ { .0. } ) ) |
45 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
46 |
45
|
adantl |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
47 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
48 |
19 47
|
grpinvcl |
|- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) |
49 |
48
|
adantll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) |
50 |
49
|
eldifad |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. B ) |
51 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
52 |
1 51 30
|
dvdsrmul |
|- ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) |
53 |
46 50 52
|
syl2anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) |
54 |
1
|
fvexi |
|- B e. _V |
55 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
56 |
16 30
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
57 |
3 56
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> ( .r ` R ) = ( +g ` G ) ) |
58 |
54 55 57
|
mp2b |
|- ( .r ` R ) = ( +g ` G ) |
59 |
19 58 20 47
|
grplinv |
|- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
60 |
59
|
adantll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
61 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
62 |
1 61
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
63 |
1 30 61
|
ringlidm |
|- ( ( R e. Ring /\ ( 1r ` R ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
64 |
62 63
|
mpdan |
|- ( R e. Ring -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
65 |
64
|
adantr |
|- ( ( R e. Ring /\ G e. Grp ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
66 |
|
simpr |
|- ( ( R e. Ring /\ G e. Grp ) -> G e. Grp ) |
67 |
4 61
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
68 |
67
|
adantr |
|- ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( Unit ` R ) ) |
69 |
44 68
|
sseldd |
|- ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( B \ { .0. } ) ) |
70 |
19 58 20
|
grpid |
|- ( ( G e. Grp /\ ( 1r ` R ) e. ( B \ { .0. } ) ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) |
71 |
66 69 70
|
syl2anc |
|- ( ( R e. Ring /\ G e. Grp ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) |
72 |
65 71
|
mpbid |
|- ( ( R e. Ring /\ G e. Grp ) -> ( 0g ` G ) = ( 1r ` R ) ) |
73 |
72
|
adantr |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( 0g ` G ) = ( 1r ` R ) ) |
74 |
60 73
|
eqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
75 |
53 74
|
breqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( 1r ` R ) ) |
76 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
77 |
76 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
78 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
79 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
80 |
77 78 79
|
dvdsrmul |
|- ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
81 |
46 50 80
|
syl2anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
82 |
1 30 76 79
|
opprmul |
|- ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) |
83 |
19 58 20 47
|
grprinv |
|- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) |
84 |
83
|
adantll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) |
85 |
84 73
|
eqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 1r ` R ) ) |
86 |
82 85
|
eqtrid |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) |
87 |
81 86
|
breqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
88 |
4 61 51 76 78
|
isunit |
|- ( x e. ( Unit ` R ) <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
89 |
75 87 88
|
sylanbrc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. ( Unit ` R ) ) |
90 |
44 89
|
eqelssd |
|- ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) = ( B \ { .0. } ) ) |
91 |
12 90
|
impbida |
|- ( R e. Ring -> ( ( Unit ` R ) = ( B \ { .0. } ) <-> G e. Grp ) ) |
92 |
91
|
pm5.32i |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) <-> ( R e. Ring /\ G e. Grp ) ) |
93 |
5 92
|
bitri |
|- ( R e. DivRing <-> ( R e. Ring /\ G e. Grp ) ) |