| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdrng2.b |
|- B = ( Base ` R ) |
| 2 |
|
isdrng2.z |
|- .0. = ( 0g ` R ) |
| 3 |
|
isdrng2.g |
|- G = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
| 4 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 5 |
1 4 2
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) ) |
| 6 |
|
oveq2 |
|- ( ( Unit ` R ) = ( B \ { .0. } ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 7 |
6
|
adantl |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) |
| 8 |
7 3
|
eqtr4di |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = G ) |
| 9 |
|
eqid |
|- ( ( mulGrp ` R ) |`s ( Unit ` R ) ) = ( ( mulGrp ` R ) |`s ( Unit ` R ) ) |
| 10 |
4 9
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
| 11 |
10
|
adantr |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> ( ( mulGrp ` R ) |`s ( Unit ` R ) ) e. Grp ) |
| 12 |
8 11
|
eqeltrrd |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) -> G e. Grp ) |
| 13 |
1 4
|
unitcl |
|- ( x e. ( Unit ` R ) -> x e. B ) |
| 14 |
13
|
adantl |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. B ) |
| 15 |
|
difss |
|- ( B \ { .0. } ) C_ B |
| 16 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 17 |
16 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 18 |
3 17
|
ressbas2 |
|- ( ( B \ { .0. } ) C_ B -> ( B \ { .0. } ) = ( Base ` G ) ) |
| 19 |
15 18
|
ax-mp |
|- ( B \ { .0. } ) = ( Base ` G ) |
| 20 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 21 |
19 20
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( B \ { .0. } ) ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. ( B \ { .0. } ) ) |
| 23 |
|
eldifsn |
|- ( ( 0g ` G ) e. ( B \ { .0. } ) <-> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) |
| 24 |
22 23
|
sylib |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) e. B /\ ( 0g ` G ) =/= .0. ) ) |
| 25 |
24
|
simprd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) =/= .0. ) |
| 26 |
|
simpll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> R e. Ring ) |
| 27 |
22
|
eldifad |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( 0g ` G ) e. B ) |
| 28 |
|
simpr |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( Unit ` R ) ) |
| 29 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
| 30 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 31 |
1 4 29 30
|
dvrcan1 |
|- ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 32 |
26 27 28 31
|
syl3anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 33 |
1 4 29
|
dvrcl |
|- ( ( R e. Ring /\ ( 0g ` G ) e. B /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) |
| 34 |
26 27 28 33
|
syl3anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( 0g ` G ) ( /r ` R ) x ) e. B ) |
| 35 |
1 30 2
|
ringrz |
|- ( ( R e. Ring /\ ( ( 0g ` G ) ( /r ` R ) x ) e. B ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) |
| 36 |
26 34 35
|
syl2anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) = .0. ) |
| 37 |
25 32 36
|
3netr4d |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) |
| 38 |
|
oveq2 |
|- ( x = .0. -> ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) = ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) ) |
| 39 |
38
|
necon3i |
|- ( ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) x ) =/= ( ( ( 0g ` G ) ( /r ` R ) x ) ( .r ` R ) .0. ) -> x =/= .0. ) |
| 40 |
37 39
|
syl |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x =/= .0. ) |
| 41 |
|
eldifsn |
|- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
| 42 |
14 40 41
|
sylanbrc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( Unit ` R ) ) -> x e. ( B \ { .0. } ) ) |
| 43 |
42
|
ex |
|- ( ( R e. Ring /\ G e. Grp ) -> ( x e. ( Unit ` R ) -> x e. ( B \ { .0. } ) ) ) |
| 44 |
43
|
ssrdv |
|- ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) C_ ( B \ { .0. } ) ) |
| 45 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
| 46 |
45
|
adantl |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. B ) |
| 47 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 48 |
19 47
|
grpinvcl |
|- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) |
| 49 |
48
|
adantll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. ( B \ { .0. } ) ) |
| 50 |
49
|
eldifad |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( invg ` G ) ` x ) e. B ) |
| 51 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 52 |
1 51 30
|
dvdsrmul |
|- ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) |
| 53 |
46 50 52
|
syl2anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) ) |
| 54 |
1
|
fvexi |
|- B e. _V |
| 55 |
|
difexg |
|- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
| 56 |
16 30
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 57 |
3 56
|
ressplusg |
|- ( ( B \ { .0. } ) e. _V -> ( .r ` R ) = ( +g ` G ) ) |
| 58 |
54 55 57
|
mp2b |
|- ( .r ` R ) = ( +g ` G ) |
| 59 |
19 58 20 47
|
grplinv |
|- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 60 |
59
|
adantll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 0g ` G ) ) |
| 61 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 62 |
1 61
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 63 |
1 30 61
|
ringlidm |
|- ( ( R e. Ring /\ ( 1r ` R ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 64 |
62 63
|
mpdan |
|- ( R e. Ring -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 65 |
64
|
adantr |
|- ( ( R e. Ring /\ G e. Grp ) -> ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) ) |
| 66 |
|
simpr |
|- ( ( R e. Ring /\ G e. Grp ) -> G e. Grp ) |
| 67 |
4 61
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 68 |
67
|
adantr |
|- ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( Unit ` R ) ) |
| 69 |
44 68
|
sseldd |
|- ( ( R e. Ring /\ G e. Grp ) -> ( 1r ` R ) e. ( B \ { .0. } ) ) |
| 70 |
19 58 20
|
grpid |
|- ( ( G e. Grp /\ ( 1r ` R ) e. ( B \ { .0. } ) ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) |
| 71 |
66 69 70
|
syl2anc |
|- ( ( R e. Ring /\ G e. Grp ) -> ( ( ( 1r ` R ) ( .r ` R ) ( 1r ` R ) ) = ( 1r ` R ) <-> ( 0g ` G ) = ( 1r ` R ) ) ) |
| 72 |
65 71
|
mpbid |
|- ( ( R e. Ring /\ G e. Grp ) -> ( 0g ` G ) = ( 1r ` R ) ) |
| 73 |
72
|
adantr |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( 0g ` G ) = ( 1r ` R ) ) |
| 74 |
60 73
|
eqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
| 75 |
53 74
|
breqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` R ) ( 1r ` R ) ) |
| 76 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 77 |
76 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
| 78 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
| 79 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 80 |
77 78 79
|
dvdsrmul |
|- ( ( x e. B /\ ( ( invg ` G ) ` x ) e. B ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
| 81 |
46 50 80
|
syl2anc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) ) |
| 82 |
1 30 76 79
|
opprmul |
|- ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) |
| 83 |
19 58 20 47
|
grprinv |
|- ( ( G e. Grp /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) |
| 84 |
83
|
adantll |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 0g ` G ) ) |
| 85 |
84 73
|
eqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( x ( .r ` R ) ( ( invg ` G ) ` x ) ) = ( 1r ` R ) ) |
| 86 |
82 85
|
eqtrid |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> ( ( ( invg ` G ) ` x ) ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) |
| 87 |
81 86
|
breqtrd |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 88 |
4 61 51 76 78
|
isunit |
|- ( x e. ( Unit ` R ) <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 89 |
75 87 88
|
sylanbrc |
|- ( ( ( R e. Ring /\ G e. Grp ) /\ x e. ( B \ { .0. } ) ) -> x e. ( Unit ` R ) ) |
| 90 |
44 89
|
eqelssd |
|- ( ( R e. Ring /\ G e. Grp ) -> ( Unit ` R ) = ( B \ { .0. } ) ) |
| 91 |
12 90
|
impbida |
|- ( R e. Ring -> ( ( Unit ` R ) = ( B \ { .0. } ) <-> G e. Grp ) ) |
| 92 |
91
|
pm5.32i |
|- ( ( R e. Ring /\ ( Unit ` R ) = ( B \ { .0. } ) ) <-> ( R e. Ring /\ G e. Grp ) ) |
| 93 |
5 92
|
bitri |
|- ( R e. DivRing <-> ( R e. Ring /\ G e. Grp ) ) |