Metamath Proof Explorer


Theorem isdrng2

Description: A division ring can equivalently be defined as a ring such that the nonzero elements form a group under multiplication (from which it follows that this is the same group as the group of units). (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses isdrng2.b B=BaseR
isdrng2.z 0˙=0R
isdrng2.g G=mulGrpR𝑠B0˙
Assertion isdrng2 RDivRingRRingGGrp

Proof

Step Hyp Ref Expression
1 isdrng2.b B=BaseR
2 isdrng2.z 0˙=0R
3 isdrng2.g G=mulGrpR𝑠B0˙
4 eqid UnitR=UnitR
5 1 4 2 isdrng RDivRingRRingUnitR=B0˙
6 oveq2 UnitR=B0˙mulGrpR𝑠UnitR=mulGrpR𝑠B0˙
7 6 adantl RRingUnitR=B0˙mulGrpR𝑠UnitR=mulGrpR𝑠B0˙
8 7 3 eqtr4di RRingUnitR=B0˙mulGrpR𝑠UnitR=G
9 eqid mulGrpR𝑠UnitR=mulGrpR𝑠UnitR
10 4 9 unitgrp RRingmulGrpR𝑠UnitRGrp
11 10 adantr RRingUnitR=B0˙mulGrpR𝑠UnitRGrp
12 8 11 eqeltrrd RRingUnitR=B0˙GGrp
13 1 4 unitcl xUnitRxB
14 13 adantl RRingGGrpxUnitRxB
15 difss B0˙B
16 eqid mulGrpR=mulGrpR
17 16 1 mgpbas B=BasemulGrpR
18 3 17 ressbas2 B0˙BB0˙=BaseG
19 15 18 ax-mp B0˙=BaseG
20 eqid 0G=0G
21 19 20 grpidcl GGrp0GB0˙
22 21 ad2antlr RRingGGrpxUnitR0GB0˙
23 eldifsn 0GB0˙0GB0G0˙
24 22 23 sylib RRingGGrpxUnitR0GB0G0˙
25 24 simprd RRingGGrpxUnitR0G0˙
26 simpll RRingGGrpxUnitRRRing
27 22 eldifad RRingGGrpxUnitR0GB
28 simpr RRingGGrpxUnitRxUnitR
29 eqid /rR=/rR
30 eqid R=R
31 1 4 29 30 dvrcan1 RRing0GBxUnitR0G/rRxRx=0G
32 26 27 28 31 syl3anc RRingGGrpxUnitR0G/rRxRx=0G
33 1 4 29 dvrcl RRing0GBxUnitR0G/rRxB
34 26 27 28 33 syl3anc RRingGGrpxUnitR0G/rRxB
35 1 30 2 ringrz RRing0G/rRxB0G/rRxR0˙=0˙
36 26 34 35 syl2anc RRingGGrpxUnitR0G/rRxR0˙=0˙
37 25 32 36 3netr4d RRingGGrpxUnitR0G/rRxRx0G/rRxR0˙
38 oveq2 x=0˙0G/rRxRx=0G/rRxR0˙
39 38 necon3i 0G/rRxRx0G/rRxR0˙x0˙
40 37 39 syl RRingGGrpxUnitRx0˙
41 eldifsn xB0˙xBx0˙
42 14 40 41 sylanbrc RRingGGrpxUnitRxB0˙
43 42 ex RRingGGrpxUnitRxB0˙
44 43 ssrdv RRingGGrpUnitRB0˙
45 eldifi xB0˙xB
46 45 adantl RRingGGrpxB0˙xB
47 eqid invgG=invgG
48 19 47 grpinvcl GGrpxB0˙invgGxB0˙
49 48 adantll RRingGGrpxB0˙invgGxB0˙
50 49 eldifad RRingGGrpxB0˙invgGxB
51 eqid rR=rR
52 1 51 30 dvdsrmul xBinvgGxBxrRinvgGxRx
53 46 50 52 syl2anc RRingGGrpxB0˙xrRinvgGxRx
54 1 fvexi BV
55 difexg BVB0˙V
56 16 30 mgpplusg R=+mulGrpR
57 3 56 ressplusg B0˙VR=+G
58 54 55 57 mp2b R=+G
59 19 58 20 47 grplinv GGrpxB0˙invgGxRx=0G
60 59 adantll RRingGGrpxB0˙invgGxRx=0G
61 eqid 1R=1R
62 1 61 ringidcl RRing1RB
63 1 30 61 ringlidm RRing1RB1RR1R=1R
64 62 63 mpdan RRing1RR1R=1R
65 64 adantr RRingGGrp1RR1R=1R
66 simpr RRingGGrpGGrp
67 4 61 1unit RRing1RUnitR
68 67 adantr RRingGGrp1RUnitR
69 44 68 sseldd RRingGGrp1RB0˙
70 19 58 20 grpid GGrp1RB0˙1RR1R=1R0G=1R
71 66 69 70 syl2anc RRingGGrp1RR1R=1R0G=1R
72 65 71 mpbid RRingGGrp0G=1R
73 72 adantr RRingGGrpxB0˙0G=1R
74 60 73 eqtrd RRingGGrpxB0˙invgGxRx=1R
75 53 74 breqtrd RRingGGrpxB0˙xrR1R
76 eqid opprR=opprR
77 76 1 opprbas B=BaseopprR
78 eqid ropprR=ropprR
79 eqid opprR=opprR
80 77 78 79 dvdsrmul xBinvgGxBxropprRinvgGxopprRx
81 46 50 80 syl2anc RRingGGrpxB0˙xropprRinvgGxopprRx
82 1 30 76 79 opprmul invgGxopprRx=xRinvgGx
83 19 58 20 47 grprinv GGrpxB0˙xRinvgGx=0G
84 83 adantll RRingGGrpxB0˙xRinvgGx=0G
85 84 73 eqtrd RRingGGrpxB0˙xRinvgGx=1R
86 82 85 eqtrid RRingGGrpxB0˙invgGxopprRx=1R
87 81 86 breqtrd RRingGGrpxB0˙xropprR1R
88 4 61 51 76 78 isunit xUnitRxrR1RxropprR1R
89 75 87 88 sylanbrc RRingGGrpxB0˙xUnitR
90 44 89 eqelssd RRingGGrpUnitR=B0˙
91 12 90 impbida RRingUnitR=B0˙GGrp
92 91 pm5.32i RRingUnitR=B0˙RRingGGrp
93 5 92 bitri RDivRingRRingGGrp