Metamath Proof Explorer


Theorem drngprop

Description: If two structures have the same ring components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013) (Revised by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses drngprop.b Base K = Base L
drngprop.p + K = + L
drngprop.m K = L
Assertion drngprop K DivRing L DivRing

Proof

Step Hyp Ref Expression
1 drngprop.b Base K = Base L
2 drngprop.p + K = + L
3 drngprop.m K = L
4 eqidd K Ring Base K = Base K
5 1 a1i K Ring Base K = Base L
6 3 oveqi x K y = x L y
7 6 a1i K Ring x Base K y Base K x K y = x L y
8 4 5 7 unitpropd K Ring Unit K = Unit L
9 2 oveqi x + K y = x + L y
10 9 a1i K Ring x Base K y Base K x + K y = x + L y
11 4 5 10 grpidpropd K Ring 0 K = 0 L
12 11 sneqd K Ring 0 K = 0 L
13 12 difeq2d K Ring Base K 0 K = Base K 0 L
14 8 13 eqeq12d K Ring Unit K = Base K 0 K Unit L = Base K 0 L
15 14 pm5.32i K Ring Unit K = Base K 0 K K Ring Unit L = Base K 0 L
16 1 2 3 ringprop K Ring L Ring
17 16 anbi1i K Ring Unit L = Base K 0 L L Ring Unit L = Base K 0 L
18 15 17 bitri K Ring Unit K = Base K 0 K L Ring Unit L = Base K 0 L
19 eqid Base K = Base K
20 eqid Unit K = Unit K
21 eqid 0 K = 0 K
22 19 20 21 isdrng K DivRing K Ring Unit K = Base K 0 K
23 eqid Unit L = Unit L
24 eqid 0 L = 0 L
25 1 23 24 isdrng L DivRing L Ring Unit L = Base K 0 L
26 18 22 25 3bitr4i K DivRing L DivRing