| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngprop.b |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) |
| 2 |
|
drngprop.p |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) |
| 3 |
|
drngprop.m |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) |
| 4 |
|
eqidd |
⊢ ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
| 5 |
1
|
a1i |
⊢ ( 𝐾 ∈ Ring → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 6 |
3
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
| 7 |
6
|
a1i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 8 |
4 5 7
|
unitpropd |
⊢ ( 𝐾 ∈ Ring → ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐿 ) ) |
| 9 |
2
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 11 |
4 5 10
|
grpidpropd |
⊢ ( 𝐾 ∈ Ring → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
| 12 |
11
|
sneqd |
⊢ ( 𝐾 ∈ Ring → { ( 0g ‘ 𝐾 ) } = { ( 0g ‘ 𝐿 ) } ) |
| 13 |
12
|
difeq2d |
⊢ ( 𝐾 ∈ Ring → ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) |
| 14 |
8 13
|
eqeq12d |
⊢ ( 𝐾 ∈ Ring → ( ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ↔ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 15 |
14
|
pm5.32i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 16 |
1 2 3
|
ringprop |
⊢ ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) |
| 17 |
16
|
anbi1i |
⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 18 |
15 17
|
bitri |
⊢ ( ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 20 |
|
eqid |
⊢ ( Unit ‘ 𝐾 ) = ( Unit ‘ 𝐾 ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 22 |
19 20 21
|
isdrng |
⊢ ( 𝐾 ∈ DivRing ↔ ( 𝐾 ∈ Ring ∧ ( Unit ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ) |
| 23 |
|
eqid |
⊢ ( Unit ‘ 𝐿 ) = ( Unit ‘ 𝐿 ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 25 |
1 23 24
|
isdrng |
⊢ ( 𝐿 ∈ DivRing ↔ ( 𝐿 ∈ Ring ∧ ( Unit ‘ 𝐿 ) = ( ( Base ‘ 𝐾 ) ∖ { ( 0g ‘ 𝐿 ) } ) ) ) |
| 26 |
18 22 25
|
3bitr4i |
⊢ ( 𝐾 ∈ DivRing ↔ 𝐿 ∈ DivRing ) |