| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringprop.b |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) |
| 2 |
|
ringprop.p |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) |
| 3 |
|
ringprop.m |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐿 ) |
| 4 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
| 5 |
1
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 6 |
2
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) |
| 7 |
6
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 8 |
3
|
oveqi |
⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) |
| 9 |
8
|
a1i |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
| 10 |
4 5 7 9
|
ringpropd |
⊢ ( ⊤ → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 11 |
10
|
mptru |
⊢ ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) |