Step |
Hyp |
Ref |
Expression |
1 |
|
ringprop.b |
|- ( Base ` K ) = ( Base ` L ) |
2 |
|
ringprop.p |
|- ( +g ` K ) = ( +g ` L ) |
3 |
|
ringprop.m |
|- ( .r ` K ) = ( .r ` L ) |
4 |
|
eqidd |
|- ( T. -> ( Base ` K ) = ( Base ` K ) ) |
5 |
1
|
a1i |
|- ( T. -> ( Base ` K ) = ( Base ` L ) ) |
6 |
2
|
oveqi |
|- ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) |
7 |
6
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
8 |
3
|
oveqi |
|- ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) |
9 |
8
|
a1i |
|- ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
10 |
4 5 7 9
|
ringpropd |
|- ( T. -> ( K e. Ring <-> L e. Ring ) ) |
11 |
10
|
mptru |
|- ( K e. Ring <-> L e. Ring ) |