Metamath Proof Explorer


Theorem ringprop

Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)

Ref Expression
Hypotheses ringprop.b
|- ( Base ` K ) = ( Base ` L )
ringprop.p
|- ( +g ` K ) = ( +g ` L )
ringprop.m
|- ( .r ` K ) = ( .r ` L )
Assertion ringprop
|- ( K e. Ring <-> L e. Ring )

Proof

Step Hyp Ref Expression
1 ringprop.b
 |-  ( Base ` K ) = ( Base ` L )
2 ringprop.p
 |-  ( +g ` K ) = ( +g ` L )
3 ringprop.m
 |-  ( .r ` K ) = ( .r ` L )
4 eqidd
 |-  ( T. -> ( Base ` K ) = ( Base ` K ) )
5 1 a1i
 |-  ( T. -> ( Base ` K ) = ( Base ` L ) )
6 2 oveqi
 |-  ( x ( +g ` K ) y ) = ( x ( +g ` L ) y )
7 6 a1i
 |-  ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) )
8 3 oveqi
 |-  ( x ( .r ` K ) y ) = ( x ( .r ` L ) y )
9 8 a1i
 |-  ( ( T. /\ ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) )
10 4 5 7 9 ringpropd
 |-  ( T. -> ( K e. Ring <-> L e. Ring ) )
11 10 mptru
 |-  ( K e. Ring <-> L e. Ring )