| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmcl.b |
|- B = ( Base ` R ) |
| 2 |
|
drngmcl.t |
|- .x. = ( .r ` R ) |
| 3 |
|
drngmcl.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 5 |
|
eldifi |
|- ( X e. ( B \ { .0. } ) -> X e. B ) |
| 6 |
|
eldifi |
|- ( Y e. ( B \ { .0. } ) -> Y e. B ) |
| 7 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 8 |
4 5 6 7
|
syl3an |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. B ) |
| 9 |
|
drngdomn |
|- ( R e. DivRing -> R e. Domn ) |
| 10 |
|
eldifsn |
|- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
| 11 |
10
|
biimpi |
|- ( X e. ( B \ { .0. } ) -> ( X e. B /\ X =/= .0. ) ) |
| 12 |
|
eldifsn |
|- ( Y e. ( B \ { .0. } ) <-> ( Y e. B /\ Y =/= .0. ) ) |
| 13 |
12
|
biimpi |
|- ( Y e. ( B \ { .0. } ) -> ( Y e. B /\ Y =/= .0. ) ) |
| 14 |
1 2 3
|
domnmuln0 |
|- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |
| 15 |
9 11 13 14
|
syl3an |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) =/= .0. ) |
| 16 |
8 15
|
eldifsnd |
|- ( ( R e. DivRing /\ X e. ( B \ { .0. } ) /\ Y e. ( B \ { .0. } ) ) -> ( X .x. Y ) e. ( B \ { .0. } ) ) |