Metamath Proof Explorer


Theorem drngmcl

Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011)

Ref Expression
Hypotheses drngmcl.b B=BaseR
drngmcl.t ·˙=R
drngmcl.z 0˙=0R
Assertion drngmcl RDivRingXB0˙YB0˙X·˙YB0˙

Proof

Step Hyp Ref Expression
1 drngmcl.b B=BaseR
2 drngmcl.t ·˙=R
3 drngmcl.z 0˙=0R
4 eqid mulGrpR𝑠B0˙=mulGrpR𝑠B0˙
5 1 3 4 drngmgp RDivRingmulGrpR𝑠B0˙Grp
6 difss B0˙B
7 eqid mulGrpR=mulGrpR
8 7 1 mgpbas B=BasemulGrpR
9 4 8 ressbas2 B0˙BB0˙=BasemulGrpR𝑠B0˙
10 6 9 ax-mp B0˙=BasemulGrpR𝑠B0˙
11 1 fvexi BV
12 difexg BVB0˙V
13 7 2 mgpplusg ·˙=+mulGrpR
14 4 13 ressplusg B0˙V·˙=+mulGrpR𝑠B0˙
15 11 12 14 mp2b ·˙=+mulGrpR𝑠B0˙
16 10 15 grpcl mulGrpR𝑠B0˙GrpXB0˙YB0˙X·˙YB0˙
17 5 16 syl3an1 RDivRingXB0˙YB0˙X·˙YB0˙