| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domneq0.b |
|- B = ( Base ` R ) |
| 2 |
|
domneq0.t |
|- .x. = ( .r ` R ) |
| 3 |
|
domneq0.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
an4 |
|- ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) <-> ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) ) |
| 5 |
|
neanior |
|- ( ( X =/= .0. /\ Y =/= .0. ) <-> -. ( X = .0. \/ Y = .0. ) ) |
| 6 |
1 2 3
|
domneq0 |
|- ( ( R e. Domn /\ X e. B /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 7 |
6
|
3expb |
|- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) = .0. <-> ( X = .0. \/ Y = .0. ) ) ) |
| 8 |
7
|
necon3abid |
|- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X .x. Y ) =/= .0. <-> -. ( X = .0. \/ Y = .0. ) ) ) |
| 9 |
5 8
|
bitr4id |
|- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) <-> ( X .x. Y ) =/= .0. ) ) |
| 10 |
9
|
biimpd |
|- ( ( R e. Domn /\ ( X e. B /\ Y e. B ) ) -> ( ( X =/= .0. /\ Y =/= .0. ) -> ( X .x. Y ) =/= .0. ) ) |
| 11 |
10
|
expimpd |
|- ( R e. Domn -> ( ( ( X e. B /\ Y e. B ) /\ ( X =/= .0. /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) ) |
| 12 |
4 11
|
biimtrid |
|- ( R e. Domn -> ( ( ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) ) |
| 13 |
12
|
3impib |
|- ( ( R e. Domn /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |