Step |
Hyp |
Ref |
Expression |
1 |
|
bi2.04 |
|- ( ( -. a = .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( ( a .x. b ) = .0. -> ( -. a = .0. -> b = .0. ) ) ) |
2 |
|
df-ne |
|- ( a =/= .0. <-> -. a = .0. ) |
3 |
2
|
imbi1i |
|- ( ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( -. a = .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
4 |
|
df-or |
|- ( ( a = .0. \/ b = .0. ) <-> ( -. a = .0. -> b = .0. ) ) |
5 |
4
|
imbi2i |
|- ( ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> ( ( a .x. b ) = .0. -> ( -. a = .0. -> b = .0. ) ) ) |
6 |
1 3 5
|
3bitr4ri |
|- ( ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
7 |
6
|
2ralbii |
|- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. B A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
8 |
|
r19.21v |
|- ( A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
9 |
8
|
ralbii |
|- ( A. a e. B A. b e. B ( a =/= .0. -> ( ( a .x. b ) = .0. -> b = .0. ) ) <-> A. a e. B ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
10 |
|
raldifsnb |
|- ( A. a e. B ( a =/= .0. -> A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |
11 |
7 9 10
|
3bitri |
|- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |