Metamath Proof Explorer


Theorem isdomn5

Description: The right conjunct in the right hand side of the equivalence of isdomn is logically equivalent to a less symmetric version where one of the variables is restricted to be nonzero. (Contributed by SN, 16-Sep-2024)

Ref Expression
Assertion isdomn5 ( ∀ 𝑎𝐵𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) )

Proof

Step Hyp Ref Expression
1 bi2.04 ( ( ¬ 𝑎 = 0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → ( ¬ 𝑎 = 0𝑏 = 0 ) ) )
2 df-ne ( 𝑎0 ↔ ¬ 𝑎 = 0 )
3 2 imbi1i ( ( 𝑎0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) ↔ ( ¬ 𝑎 = 0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) )
4 df-or ( ( 𝑎 = 0𝑏 = 0 ) ↔ ( ¬ 𝑎 = 0𝑏 = 0 ) )
5 4 imbi2i ( ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0𝑏 = 0 ) ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → ( ¬ 𝑎 = 0𝑏 = 0 ) ) )
6 1 3 5 3bitr4ri ( ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0𝑏 = 0 ) ) ↔ ( 𝑎0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) )
7 6 2ralbii ( ∀ 𝑎𝐵𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0𝑏 = 0 ) ) ↔ ∀ 𝑎𝐵𝑏𝐵 ( 𝑎0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) )
8 r19.21v ( ∀ 𝑏𝐵 ( 𝑎0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) ↔ ( 𝑎0 → ∀ 𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) )
9 8 ralbii ( ∀ 𝑎𝐵𝑏𝐵 ( 𝑎0 → ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) ↔ ∀ 𝑎𝐵 ( 𝑎0 → ∀ 𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) )
10 raldifsnb ( ∀ 𝑎𝐵 ( 𝑎0 → ∀ 𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) )
11 7 9 10 3bitri ( ∀ 𝑎𝐵𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏𝐵 ( ( 𝑎 · 𝑏 ) = 0𝑏 = 0 ) )