Step |
Hyp |
Ref |
Expression |
1 |
|
bi2.04 |
⊢ ( ( ¬ 𝑎 = 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → ( ¬ 𝑎 = 0 → 𝑏 = 0 ) ) ) |
2 |
|
df-ne |
⊢ ( 𝑎 ≠ 0 ↔ ¬ 𝑎 = 0 ) |
3 |
2
|
imbi1i |
⊢ ( ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ( ¬ 𝑎 = 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
4 |
|
df-or |
⊢ ( ( 𝑎 = 0 ∨ 𝑏 = 0 ) ↔ ( ¬ 𝑎 = 0 → 𝑏 = 0 ) ) |
5 |
4
|
imbi2i |
⊢ ( ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → ( ¬ 𝑎 = 0 → 𝑏 = 0 ) ) ) |
6 |
1 3 5
|
3bitr4ri |
⊢ ( ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
7 |
6
|
2ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
8 |
|
r19.21v |
⊢ ( ∀ 𝑏 ∈ 𝐵 ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ( 𝑎 ≠ 0 → ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
9 |
8
|
ralbii |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ≠ 0 → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ( 𝑎 ≠ 0 → ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
10 |
|
raldifsnb |
⊢ ( ∀ 𝑎 ∈ 𝐵 ( 𝑎 ≠ 0 → ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) |
11 |
7 9 10
|
3bitri |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) |