| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdomn4.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
isdomn4.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
isdomn4.x |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
| 5 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 6 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
| 8 |
|
eldifi |
⊢ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) → 𝑎 ∈ 𝐵 ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
| 11 |
|
simpr2 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
| 12 |
|
simpr3 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑐 ∈ 𝐵 ) |
| 13 |
1 3 5 7 10 11 12
|
ringsubdi |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) = ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) = 0 ↔ ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 ) ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → 𝑅 ∈ Domn ) |
| 16 |
10
|
adantr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → 𝑎 ∈ 𝐵 ) |
| 17 |
|
eldifsni |
⊢ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) → 𝑎 ≠ 0 ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → 𝑎 ≠ 0 ) |
| 19 |
18
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → 𝑎 ≠ 0 ) |
| 20 |
6
|
ringgrpd |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Grp ) |
| 21 |
1 5
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 22 |
20 21
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 23 |
22
|
3adant3r1 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) |
| 26 |
1 3 2
|
domnmuln0 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ≠ 0 ) ∧ ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐵 ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) ) → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) ≠ 0 ) |
| 27 |
15 16 19 24 25 26
|
syl122anc |
⊢ ( ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) ∧ ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 ) → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) ≠ 0 ) |
| 28 |
27
|
ex |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ≠ 0 → ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) ≠ 0 ) ) |
| 29 |
28
|
necon4d |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 · ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) ) = 0 → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ) ) |
| 30 |
14 29
|
sylbird |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 → ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ) ) |
| 31 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
| 32 |
|
id |
⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝐵 ) |
| 33 |
1 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 34 |
6 8 32 33
|
syl3an |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 35 |
34
|
3adant3r3 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
| 36 |
|
id |
⊢ ( 𝑐 ∈ 𝐵 → 𝑐 ∈ 𝐵 ) |
| 37 |
1 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
| 38 |
6 8 36 37
|
syl3an |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
| 39 |
38
|
3adant3r2 |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( 𝑎 · 𝑐 ) ∈ 𝐵 ) |
| 40 |
1 2 5
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑎 · 𝑏 ) ∈ 𝐵 ∧ ( 𝑎 · 𝑐 ) ∈ 𝐵 ) → ( ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 ↔ ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ) ) |
| 41 |
31 35 39 40
|
syl3anc |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( ( 𝑎 · 𝑏 ) ( -g ‘ 𝑅 ) ( 𝑎 · 𝑐 ) ) = 0 ↔ ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ) ) |
| 42 |
1 2 5
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ↔ 𝑏 = 𝑐 ) ) |
| 43 |
31 11 12 42
|
syl3anc |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑏 ( -g ‘ 𝑅 ) 𝑐 ) = 0 ↔ 𝑏 = 𝑐 ) ) |
| 44 |
30 41 43
|
3imtr3d |
⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 45 |
44
|
ralrimivvva |
⊢ ( 𝑅 ∈ Domn → ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) |
| 46 |
4 45
|
jca |
⊢ ( 𝑅 ∈ Domn → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
| 47 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
| 48 |
47
|
ringgrpd |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Grp ) |
| 49 |
1 2
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 50 |
48 49
|
syl |
⊢ ( 𝑅 ∈ NzRing → 0 ∈ 𝐵 ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → 0 ∈ 𝐵 ) |
| 52 |
|
oveq2 |
⊢ ( 𝑐 = 0 → ( 𝑎 · 𝑐 ) = ( 𝑎 · 0 ) ) |
| 53 |
52
|
eqeq2d |
⊢ ( 𝑐 = 0 → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) ↔ ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) ) ) |
| 54 |
|
eqeq2 |
⊢ ( 𝑐 = 0 → ( 𝑏 = 𝑐 ↔ 𝑏 = 0 ) ) |
| 55 |
53 54
|
imbi12d |
⊢ ( 𝑐 = 0 → ( ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ) ) |
| 56 |
55
|
rspcv |
⊢ ( 0 ∈ 𝐵 → ( ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ) ) |
| 57 |
51 56
|
syl |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ) ) |
| 58 |
1 3 2
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑎 ∈ 𝐵 ) → ( 𝑎 · 0 ) = 0 ) |
| 59 |
47 8 58
|
syl2an |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑎 · 0 ) = 0 ) |
| 60 |
59
|
adantrr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 0 ) = 0 ) |
| 61 |
60
|
eqeq2d |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) ↔ ( 𝑎 · 𝑏 ) = 0 ) ) |
| 62 |
61
|
imbi1d |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 0 ) → 𝑏 = 0 ) ↔ ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 63 |
57 62
|
sylibd |
⊢ ( ( 𝑅 ∈ NzRing ∧ ( 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑏 ∈ 𝐵 ) ) → ( ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 64 |
63
|
ralimdvva |
⊢ ( 𝑅 ∈ NzRing → ( ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) ) |
| 65 |
|
isdomn5 |
⊢ ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ↔ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → 𝑏 = 0 ) ) |
| 66 |
64 65
|
imbitrrdi |
⊢ ( 𝑅 ∈ NzRing → ( ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ) ) |
| 67 |
66
|
imdistani |
⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) → ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ) ) |
| 68 |
1 3 2
|
isdomn |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = 0 → ( 𝑎 = 0 ∨ 𝑏 = 0 ) ) ) ) |
| 69 |
67 68
|
sylibr |
⊢ ( ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) → 𝑅 ∈ Domn ) |
| 70 |
46 69
|
impbii |
⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ∀ 𝑎 ∈ ( 𝐵 ∖ { 0 } ) ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( ( 𝑎 · 𝑏 ) = ( 𝑎 · 𝑐 ) → 𝑏 = 𝑐 ) ) ) |