Metamath Proof Explorer


Theorem domnmuln0

Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses domneq0.b 𝐵 = ( Base ‘ 𝑅 )
domneq0.t · = ( .r𝑅 )
domneq0.z 0 = ( 0g𝑅 )
Assertion domnmuln0 ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑋0 ) ∧ ( 𝑌𝐵𝑌0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 domneq0.b 𝐵 = ( Base ‘ 𝑅 )
2 domneq0.t · = ( .r𝑅 )
3 domneq0.z 0 = ( 0g𝑅 )
4 an4 ( ( ( 𝑋𝐵𝑋0 ) ∧ ( 𝑌𝐵𝑌0 ) ) ↔ ( ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋0𝑌0 ) ) )
5 neanior ( ( 𝑋0𝑌0 ) ↔ ¬ ( 𝑋 = 0𝑌 = 0 ) )
6 1 2 3 domneq0 ( ( 𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0𝑌 = 0 ) ) )
7 6 3expb ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 = 0𝑌 = 0 ) ) )
8 7 necon3abid ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ¬ ( 𝑋 = 0𝑌 = 0 ) ) )
9 5 8 bitr4id ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑋0𝑌0 ) ↔ ( 𝑋 · 𝑌 ) ≠ 0 ) )
10 9 biimpd ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( ( 𝑋0𝑌0 ) → ( 𝑋 · 𝑌 ) ≠ 0 ) )
11 10 expimpd ( 𝑅 ∈ Domn → ( ( ( 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋0𝑌0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) )
12 4 11 syl5bi ( 𝑅 ∈ Domn → ( ( ( 𝑋𝐵𝑋0 ) ∧ ( 𝑌𝐵𝑌0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) )
13 12 3impib ( ( 𝑅 ∈ Domn ∧ ( 𝑋𝐵𝑋0 ) ∧ ( 𝑌𝐵𝑌0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 )