Metamath Proof Explorer


Theorem domnmuln0

Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses domneq0.b B=BaseR
domneq0.t ·˙=R
domneq0.z 0˙=0R
Assertion domnmuln0 RDomnXBX0˙YBY0˙X·˙Y0˙

Proof

Step Hyp Ref Expression
1 domneq0.b B=BaseR
2 domneq0.t ·˙=R
3 domneq0.z 0˙=0R
4 an4 XBX0˙YBY0˙XBYBX0˙Y0˙
5 neanior X0˙Y0˙¬X=0˙Y=0˙
6 1 2 3 domneq0 RDomnXBYBX·˙Y=0˙X=0˙Y=0˙
7 6 3expb RDomnXBYBX·˙Y=0˙X=0˙Y=0˙
8 7 necon3abid RDomnXBYBX·˙Y0˙¬X=0˙Y=0˙
9 5 8 bitr4id RDomnXBYBX0˙Y0˙X·˙Y0˙
10 9 biimpd RDomnXBYBX0˙Y0˙X·˙Y0˙
11 10 expimpd RDomnXBYBX0˙Y0˙X·˙Y0˙
12 4 11 biimtrid RDomnXBX0˙YBY0˙X·˙Y0˙
13 12 3impib RDomnXBX0˙YBY0˙X·˙Y0˙