Description: A ring is a domain iff all nonzero elements are nonzero-divisors. (Contributed by Mario Carneiro, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdomn2.b | |
|
isdomn2.t | |
||
isdomn2.z | |
||
Assertion | isdomn2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdomn2.b | |
|
2 | isdomn2.t | |
|
3 | isdomn2.z | |
|
4 | eqid | |
|
5 | 1 4 3 | isdomn | |
6 | dfss3 | |
|
7 | 2 1 4 3 | isrrg | |
8 | 7 | baib | |
9 | 8 | imbi2d | |
10 | 9 | ralbiia | |
11 | eldifsn | |
|
12 | 11 | imbi1i | |
13 | impexp | |
|
14 | 12 13 | bitri | |
15 | 14 | ralbii2 | |
16 | con34b | |
|
17 | impexp | |
|
18 | ioran | |
|
19 | 18 | imbi1i | |
20 | df-ne | |
|
21 | con34b | |
|
22 | 20 21 | imbi12i | |
23 | 17 19 22 | 3bitr4i | |
24 | 16 23 | bitri | |
25 | 24 | ralbii | |
26 | r19.21v | |
|
27 | 25 26 | bitri | |
28 | 27 | ralbii | |
29 | 10 15 28 | 3bitr4i | |
30 | 6 29 | bitr2i | |
31 | 30 | anbi2i | |
32 | 5 31 | bitri | |