Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn2.b |
|- B = ( Base ` R ) |
2 |
|
isdomn2.t |
|- E = ( RLReg ` R ) |
3 |
|
isdomn2.z |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
5 |
1 4 3
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
6 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
7 |
2 1 4 3
|
isrrg |
|- ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
8 |
7
|
baib |
|- ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
9 |
6 8
|
syl |
|- ( x e. ( B \ { .0. } ) -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
10 |
9
|
ralbiia |
|- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) |
11 |
|
dfss3 |
|- ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) |
12 |
|
isdomn5 |
|- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) |
13 |
10 11 12
|
3bitr4ri |
|- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) |
14 |
13
|
anbi2i |
|- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
15 |
5 14
|
bitri |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |