| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdomn2.b |
|- B = ( Base ` R ) |
| 2 |
|
isdomn2.t |
|- E = ( RLReg ` R ) |
| 3 |
|
isdomn2.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 5 |
1 4 3
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) ) |
| 6 |
|
eldifi |
|- ( x e. ( B \ { .0. } ) -> x e. B ) |
| 7 |
2 1 4 3
|
isrrg |
|- ( x e. E <-> ( x e. B /\ A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 8 |
7
|
baib |
|- ( x e. B -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 9 |
6 8
|
syl |
|- ( x e. ( B \ { .0. } ) -> ( x e. E <-> A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) ) |
| 10 |
9
|
ralbiia |
|- ( A. x e. ( B \ { .0. } ) x e. E <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) |
| 11 |
|
dfss3 |
|- ( ( B \ { .0. } ) C_ E <-> A. x e. ( B \ { .0. } ) x e. E ) |
| 12 |
|
isdomn5 |
|- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> A. x e. ( B \ { .0. } ) A. y e. B ( ( x ( .r ` R ) y ) = .0. -> y = .0. ) ) |
| 13 |
10 11 12
|
3bitr4ri |
|- ( A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) <-> ( B \ { .0. } ) C_ E ) |
| 14 |
13
|
anbi2i |
|- ( ( R e. NzRing /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = .0. -> ( x = .0. \/ y = .0. ) ) ) <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| 15 |
5 14
|
bitri |
|- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |