Metamath Proof Explorer


Theorem isrrg

Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgval.e E=RLRegR
rrgval.b B=BaseR
rrgval.t ·˙=R
rrgval.z 0˙=0R
Assertion isrrg XEXByBX·˙y=0˙y=0˙

Proof

Step Hyp Ref Expression
1 rrgval.e E=RLRegR
2 rrgval.b B=BaseR
3 rrgval.t ·˙=R
4 rrgval.z 0˙=0R
5 oveq1 x=Xx·˙y=X·˙y
6 5 eqeq1d x=Xx·˙y=0˙X·˙y=0˙
7 6 imbi1d x=Xx·˙y=0˙y=0˙X·˙y=0˙y=0˙
8 7 ralbidv x=XyBx·˙y=0˙y=0˙yBX·˙y=0˙y=0˙
9 1 2 3 4 rrgval E=xB|yBx·˙y=0˙y=0˙
10 8 9 elrab2 XEXByBX·˙y=0˙y=0˙