Step |
Hyp |
Ref |
Expression |
1 |
|
rrgval.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
2 |
|
rrgval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
rrgval.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
rrgval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑦 ) = 0 ) ) |
7 |
6
|
imbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
9 |
1 2 3 4
|
rrgval |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } |
10 |
8 9
|
elrab2 |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 𝑋 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |