Metamath Proof Explorer


Theorem isrrg

Description: Membership in the set of left-regular elements. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgval.e 𝐸 = ( RLReg ‘ 𝑅 )
rrgval.b 𝐵 = ( Base ‘ 𝑅 )
rrgval.t · = ( .r𝑅 )
rrgval.z 0 = ( 0g𝑅 )
Assertion isrrg ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) ) )

Proof

Step Hyp Ref Expression
1 rrgval.e 𝐸 = ( RLReg ‘ 𝑅 )
2 rrgval.b 𝐵 = ( Base ‘ 𝑅 )
3 rrgval.t · = ( .r𝑅 )
4 rrgval.z 0 = ( 0g𝑅 )
5 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 · 𝑦 ) = ( 𝑋 · 𝑦 ) )
6 5 eqeq1d ( 𝑥 = 𝑋 → ( ( 𝑥 · 𝑦 ) = 0 ↔ ( 𝑋 · 𝑦 ) = 0 ) )
7 6 imbi1d ( 𝑥 = 𝑋 → ( ( ( 𝑥 · 𝑦 ) = 0𝑦 = 0 ) ↔ ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) ) )
8 7 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑦𝐵 ( ( 𝑥 · 𝑦 ) = 0𝑦 = 0 ) ↔ ∀ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) ) )
9 1 2 3 4 rrgval 𝐸 = { 𝑥𝐵 ∣ ∀ 𝑦𝐵 ( ( 𝑥 · 𝑦 ) = 0𝑦 = 0 ) }
10 8 9 elrab2 ( 𝑋𝐸 ↔ ( 𝑋𝐵 ∧ ∀ 𝑦𝐵 ( ( 𝑋 · 𝑦 ) = 0𝑦 = 0 ) ) )