Metamath Proof Explorer


Theorem isdomn

Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Hypotheses isdomn.b B = Base R
isdomn.t · ˙ = R
isdomn.z 0 ˙ = 0 R
Assertion isdomn R Domn R NzRing x B y B x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙

Proof

Step Hyp Ref Expression
1 isdomn.b B = Base R
2 isdomn.t · ˙ = R
3 isdomn.z 0 ˙ = 0 R
4 fvexd r = R Base r V
5 fveq2 r = R Base r = Base R
6 5 1 eqtr4di r = R Base r = B
7 fvexd r = R b = B 0 r V
8 fveq2 r = R 0 r = 0 R
9 8 adantr r = R b = B 0 r = 0 R
10 9 3 eqtr4di r = R b = B 0 r = 0 ˙
11 simplr r = R b = B z = 0 ˙ b = B
12 fveq2 r = R r = R
13 12 2 eqtr4di r = R r = · ˙
14 13 oveqdr r = R b = B x r y = x · ˙ y
15 id z = 0 ˙ z = 0 ˙
16 14 15 eqeqan12d r = R b = B z = 0 ˙ x r y = z x · ˙ y = 0 ˙
17 eqeq2 z = 0 ˙ x = z x = 0 ˙
18 eqeq2 z = 0 ˙ y = z y = 0 ˙
19 17 18 orbi12d z = 0 ˙ x = z y = z x = 0 ˙ y = 0 ˙
20 19 adantl r = R b = B z = 0 ˙ x = z y = z x = 0 ˙ y = 0 ˙
21 16 20 imbi12d r = R b = B z = 0 ˙ x r y = z x = z y = z x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙
22 11 21 raleqbidv r = R b = B z = 0 ˙ y b x r y = z x = z y = z y B x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙
23 11 22 raleqbidv r = R b = B z = 0 ˙ x b y b x r y = z x = z y = z x B y B x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙
24 7 10 23 sbcied2 r = R b = B [˙0 r / z]˙ x b y b x r y = z x = z y = z x B y B x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙
25 4 6 24 sbcied2 r = R [˙Base r / b]˙ [˙0 r / z]˙ x b y b x r y = z x = z y = z x B y B x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙
26 df-domn Domn = r NzRing | [˙Base r / b]˙ [˙0 r / z]˙ x b y b x r y = z x = z y = z
27 25 26 elrab2 R Domn R NzRing x B y B x · ˙ y = 0 ˙ x = 0 ˙ y = 0 ˙