Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprdomn.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| Assertion | opprdomn | ⊢ ( 𝑅 ∈ Domn → 𝑂 ∈ Domn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 | ⊢ 𝑂 = ( oppr ‘ 𝑅 ) | |
| 2 | 1 | opprdomnb | ⊢ ( 𝑅 ∈ Domn ↔ 𝑂 ∈ Domn ) |
| 3 | 2 | biimpi | ⊢ ( 𝑅 ∈ Domn → 𝑂 ∈ Domn ) |