Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprdomn.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprdomn | |- ( R e. Domn -> O e. Domn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdomn.1 | |- O = ( oppR ` R ) |
|
| 2 | 1 | opprdomnb | |- ( R e. Domn <-> O e. Domn ) |
| 3 | 2 | biimpi | |- ( R e. Domn -> O e. Domn ) |