| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdomn4.b |
|
| 2 |
|
isdomn4.0 |
|
| 3 |
|
isdomn4.x |
|
| 4 |
|
domnnzr |
|
| 5 |
|
eqid |
|
| 6 |
|
domnring |
|
| 7 |
6
|
adantr |
|
| 8 |
|
eldifi |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
9
|
adantl |
|
| 11 |
|
simpr2 |
|
| 12 |
|
simpr3 |
|
| 13 |
1 3 5 7 10 11 12
|
ringsubdi |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
|
simpll |
|
| 16 |
10
|
adantr |
|
| 17 |
|
eldifsni |
|
| 18 |
17
|
3ad2ant1 |
|
| 19 |
18
|
ad2antlr |
|
| 20 |
6
|
ringgrpd |
|
| 21 |
1 5
|
grpsubcl |
|
| 22 |
20 21
|
syl3an1 |
|
| 23 |
22
|
3adant3r1 |
|
| 24 |
23
|
adantr |
|
| 25 |
|
simpr |
|
| 26 |
1 3 2
|
domnmuln0 |
|
| 27 |
15 16 19 24 25 26
|
syl122anc |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
necon4d |
|
| 30 |
14 29
|
sylbird |
|
| 31 |
20
|
adantr |
|
| 32 |
|
id |
|
| 33 |
1 3
|
ringcl |
|
| 34 |
6 8 32 33
|
syl3an |
|
| 35 |
34
|
3adant3r3 |
|
| 36 |
|
id |
|
| 37 |
1 3
|
ringcl |
|
| 38 |
6 8 36 37
|
syl3an |
|
| 39 |
38
|
3adant3r2 |
|
| 40 |
1 2 5
|
grpsubeq0 |
|
| 41 |
31 35 39 40
|
syl3anc |
|
| 42 |
1 2 5
|
grpsubeq0 |
|
| 43 |
31 11 12 42
|
syl3anc |
|
| 44 |
30 41 43
|
3imtr3d |
|
| 45 |
44
|
ralrimivvva |
|
| 46 |
4 45
|
jca |
|
| 47 |
|
nzrring |
|
| 48 |
47
|
ringgrpd |
|
| 49 |
1 2
|
grpidcl |
|
| 50 |
48 49
|
syl |
|
| 51 |
50
|
adantr |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
eqeq2d |
|
| 54 |
|
eqeq2 |
|
| 55 |
53 54
|
imbi12d |
|
| 56 |
55
|
rspcv |
|
| 57 |
51 56
|
syl |
|
| 58 |
1 3 2
|
ringrz |
|
| 59 |
47 8 58
|
syl2an |
|
| 60 |
59
|
adantrr |
|
| 61 |
60
|
eqeq2d |
|
| 62 |
61
|
imbi1d |
|
| 63 |
57 62
|
sylibd |
|
| 64 |
63
|
ralimdvva |
|
| 65 |
|
isdomn5 |
|
| 66 |
64 65
|
imbitrrdi |
|
| 67 |
66
|
imdistani |
|
| 68 |
1 3 2
|
isdomn |
|
| 69 |
67 68
|
sylibr |
|
| 70 |
46 69
|
impbii |
|