Metamath Proof Explorer


Theorem necon4d

Description: Contrapositive inference for inequality. (Contributed by NM, 2-Apr-2007) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Hypothesis necon4d.1 φABCD
Assertion necon4d φC=DA=B

Proof

Step Hyp Ref Expression
1 necon4d.1 φABCD
2 1 necon2bd φC=D¬AB
3 nne ¬ABA=B
4 2 3 imbitrdi φC=DA=B