Step |
Hyp |
Ref |
Expression |
1 |
|
isdomn4.b |
|- B = ( Base ` R ) |
2 |
|
isdomn4.0 |
|- .0. = ( 0g ` R ) |
3 |
|
isdomn4.x |
|- .x. = ( .r ` R ) |
4 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
5 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
6 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
7 |
6
|
adantr |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> R e. Ring ) |
8 |
|
eldifi |
|- ( a e. ( B \ { .0. } ) -> a e. B ) |
9 |
8
|
3ad2ant1 |
|- ( ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) -> a e. B ) |
10 |
9
|
adantl |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> a e. B ) |
11 |
|
simpr2 |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> b e. B ) |
12 |
|
simpr3 |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> c e. B ) |
13 |
1 3 5 7 10 11 12
|
ringsubdi |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( a .x. ( b ( -g ` R ) c ) ) = ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) ) |
14 |
13
|
eqeq1d |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( a .x. ( b ( -g ` R ) c ) ) = .0. <-> ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. ) ) |
15 |
|
simpll |
|- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> R e. Domn ) |
16 |
10
|
adantr |
|- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> a e. B ) |
17 |
|
eldifsni |
|- ( a e. ( B \ { .0. } ) -> a =/= .0. ) |
18 |
17
|
3ad2ant1 |
|- ( ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) -> a =/= .0. ) |
19 |
18
|
ad2antlr |
|- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> a =/= .0. ) |
20 |
6
|
ringgrpd |
|- ( R e. Domn -> R e. Grp ) |
21 |
1 5
|
grpsubcl |
|- ( ( R e. Grp /\ b e. B /\ c e. B ) -> ( b ( -g ` R ) c ) e. B ) |
22 |
20 21
|
syl3an1 |
|- ( ( R e. Domn /\ b e. B /\ c e. B ) -> ( b ( -g ` R ) c ) e. B ) |
23 |
22
|
3adant3r1 |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( b ( -g ` R ) c ) e. B ) |
24 |
23
|
adantr |
|- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> ( b ( -g ` R ) c ) e. B ) |
25 |
|
simpr |
|- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> ( b ( -g ` R ) c ) =/= .0. ) |
26 |
1 3 2
|
domnmuln0 |
|- ( ( R e. Domn /\ ( a e. B /\ a =/= .0. ) /\ ( ( b ( -g ` R ) c ) e. B /\ ( b ( -g ` R ) c ) =/= .0. ) ) -> ( a .x. ( b ( -g ` R ) c ) ) =/= .0. ) |
27 |
15 16 19 24 25 26
|
syl122anc |
|- ( ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) /\ ( b ( -g ` R ) c ) =/= .0. ) -> ( a .x. ( b ( -g ` R ) c ) ) =/= .0. ) |
28 |
27
|
ex |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( b ( -g ` R ) c ) =/= .0. -> ( a .x. ( b ( -g ` R ) c ) ) =/= .0. ) ) |
29 |
28
|
necon4d |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( a .x. ( b ( -g ` R ) c ) ) = .0. -> ( b ( -g ` R ) c ) = .0. ) ) |
30 |
14 29
|
sylbird |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. -> ( b ( -g ` R ) c ) = .0. ) ) |
31 |
20
|
adantr |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> R e. Grp ) |
32 |
|
id |
|- ( b e. B -> b e. B ) |
33 |
1 3
|
ringcl |
|- ( ( R e. Ring /\ a e. B /\ b e. B ) -> ( a .x. b ) e. B ) |
34 |
6 8 32 33
|
syl3an |
|- ( ( R e. Domn /\ a e. ( B \ { .0. } ) /\ b e. B ) -> ( a .x. b ) e. B ) |
35 |
34
|
3adant3r3 |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( a .x. b ) e. B ) |
36 |
|
id |
|- ( c e. B -> c e. B ) |
37 |
1 3
|
ringcl |
|- ( ( R e. Ring /\ a e. B /\ c e. B ) -> ( a .x. c ) e. B ) |
38 |
6 8 36 37
|
syl3an |
|- ( ( R e. Domn /\ a e. ( B \ { .0. } ) /\ c e. B ) -> ( a .x. c ) e. B ) |
39 |
38
|
3adant3r2 |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( a .x. c ) e. B ) |
40 |
1 2 5
|
grpsubeq0 |
|- ( ( R e. Grp /\ ( a .x. b ) e. B /\ ( a .x. c ) e. B ) -> ( ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. <-> ( a .x. b ) = ( a .x. c ) ) ) |
41 |
31 35 39 40
|
syl3anc |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( ( a .x. b ) ( -g ` R ) ( a .x. c ) ) = .0. <-> ( a .x. b ) = ( a .x. c ) ) ) |
42 |
1 2 5
|
grpsubeq0 |
|- ( ( R e. Grp /\ b e. B /\ c e. B ) -> ( ( b ( -g ` R ) c ) = .0. <-> b = c ) ) |
43 |
31 11 12 42
|
syl3anc |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( b ( -g ` R ) c ) = .0. <-> b = c ) ) |
44 |
30 41 43
|
3imtr3d |
|- ( ( R e. Domn /\ ( a e. ( B \ { .0. } ) /\ b e. B /\ c e. B ) ) -> ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
45 |
44
|
ralrimivvva |
|- ( R e. Domn -> A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) |
46 |
4 45
|
jca |
|- ( R e. Domn -> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |
47 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
48 |
47
|
ringgrpd |
|- ( R e. NzRing -> R e. Grp ) |
49 |
1 2
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
50 |
48 49
|
syl |
|- ( R e. NzRing -> .0. e. B ) |
51 |
50
|
adantr |
|- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> .0. e. B ) |
52 |
|
oveq2 |
|- ( c = .0. -> ( a .x. c ) = ( a .x. .0. ) ) |
53 |
52
|
eqeq2d |
|- ( c = .0. -> ( ( a .x. b ) = ( a .x. c ) <-> ( a .x. b ) = ( a .x. .0. ) ) ) |
54 |
|
eqeq2 |
|- ( c = .0. -> ( b = c <-> b = .0. ) ) |
55 |
53 54
|
imbi12d |
|- ( c = .0. -> ( ( ( a .x. b ) = ( a .x. c ) -> b = c ) <-> ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) ) ) |
56 |
55
|
rspcv |
|- ( .0. e. B -> ( A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) ) ) |
57 |
51 56
|
syl |
|- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) ) ) |
58 |
1 3 2
|
ringrz |
|- ( ( R e. Ring /\ a e. B ) -> ( a .x. .0. ) = .0. ) |
59 |
47 8 58
|
syl2an |
|- ( ( R e. NzRing /\ a e. ( B \ { .0. } ) ) -> ( a .x. .0. ) = .0. ) |
60 |
59
|
adantrr |
|- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( a .x. .0. ) = .0. ) |
61 |
60
|
eqeq2d |
|- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( ( a .x. b ) = ( a .x. .0. ) <-> ( a .x. b ) = .0. ) ) |
62 |
61
|
imbi1d |
|- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( ( ( a .x. b ) = ( a .x. .0. ) -> b = .0. ) <-> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
63 |
57 62
|
sylibd |
|- ( ( R e. NzRing /\ ( a e. ( B \ { .0. } ) /\ b e. B ) ) -> ( A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
64 |
63
|
ralimdvva |
|- ( R e. NzRing -> ( A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) ) |
65 |
|
isdomn5 |
|- ( A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) <-> A. a e. ( B \ { .0. } ) A. b e. B ( ( a .x. b ) = .0. -> b = .0. ) ) |
66 |
64 65
|
syl6ibr |
|- ( R e. NzRing -> ( A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) -> A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) ) ) |
67 |
66
|
imdistani |
|- ( ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) -> ( R e. NzRing /\ A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) ) ) |
68 |
1 3 2
|
isdomn |
|- ( R e. Domn <-> ( R e. NzRing /\ A. a e. B A. b e. B ( ( a .x. b ) = .0. -> ( a = .0. \/ b = .0. ) ) ) ) |
69 |
67 68
|
sylibr |
|- ( ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) -> R e. Domn ) |
70 |
46 69
|
impbii |
|- ( R e. Domn <-> ( R e. NzRing /\ A. a e. ( B \ { .0. } ) A. b e. B A. c e. B ( ( a .x. b ) = ( a .x. c ) -> b = c ) ) ) |